共查询到20条相似文献,搜索用时 0 毫秒
1.
A large experimental database has been established at IFP on the same experimental setup to measure simultaneously pressure drop and liquid holdup in packed bed reactor operated in trickle for a large range of operating conditions. The varying parameters are liquid viscosity and density, gas density, bed particle shape and size. The range for gas density range is particularly large (from 1.3 to ), thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been first used to compare the prediction accuracy of the different models from the literature. Finally, the mechanistic model proposed by Attou et al. [1999. Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chemical Engineering Science 54, 785-802] has been improved by adding a new formulation for liquid film tortuosity in two-phase flow conditions. This model has been validated over the whole data range and the accuracy has been checked with data external to the data bank. The prediction accuracy is significantly increased when compared with the best available models for pressure drop and liquid retention in trickle flow reactors. 相似文献
2.
Ion Iliuta 《Chemical engineering science》2003,58(2):297-307
An isothermal one-dimensional two-fluid magnetohydrodynamic (MHD) model based on the volume average mass, charge, and momentum balance equations and the Maxwell's equations coupled via the Lorentz force and Ohm's law was developed for the prediction of the two-phase pressure drop and the total liquid holdup in trickle bed reactors experiencing a homogeneous transverse magnetic field. The slit model approximation and the drift flux Kozeny-Carman approach were extended for the derivation of appropriate drag force closures required in the conservation equations, respectively, in the trickle flow regime and in the dispersed bubble flow regime. The expression of liquid-solid drag was adapted to take into account the influence of the magnetic field on the laminar term and the damping of turbulent/inertial term via the Hartman number and the liquid-to-bed electrical resistance ratio. Associating these drag forces with the proposed model resulted in a fully predictive MHD approach for trickle beds. Several model limiting formulations were derived for an electrically conducting fluid flowing downwards with a stagnant gas (pure trickle flow) to yield liquid holdup, as well as for single-phase upward conditions to yield the single-phase pressure drops. 相似文献
3.
4.
5.
Bora Aydin 《Chemical engineering science》2008,63(1):141-152
Despite the merits of periodic operation praised in the academic literature as one of the process intensification strategies advocated for trickle-bed reactors (TBRs), there is still reluctance to implement it in industrial practice. This can partly be ascribed to the lack of engineering data relevant to the elevated temperature and pressure characterizing industrial processes. Currently, the hydrodynamics of trickle beds under cyclic operation, especially in fast mode at elevated temperature and pressure, remains by and large terra incognita. This study proposes exploration of the hydrodynamic behavior of TBRs experiencing fast liquid flow modulation at elevated temperature and moderate pressure. The effect of temperature and pressure on the liquid holdup and pressure drop time series in terms of pulse breakthrough and decay times, pulse intensity and pulse velocity was examined for a wide range of superficial gas and liquid (base and pulse) velocities for the air-water system. The pulse breakthrough and decay times decreased, whereas the pulse velocity increased with temperature and/or pressure. The pressure drop was attenuated with increasing temperature for a given superficial gas, and base and pulse superficial liquid velocities. Experimental pulse velocity values were compared to the Giakoumakis et al. [2005. Induced pulsing in trickle beds—characteristics and attenuation of pulses. Chemical Engineering Science 60, 5183-5197] correlation which revealed that it could be relied upon at elevated temperature and close to atmospheric pressure. 相似文献
6.
A two-zone two-fluid one-dimensional model was developed for the prediction of the irrigated two-phase pressure drop and the total liquid holdup in gas-liquid countercurrent columns containing structured packings and operated in the pre-loading zone. The model is based on the volume-average mass and momentum balance equations and the double slit model approximation. The model parameters, i.e., the two b2ed Ergun constants, were estimated using gas flow three-dimensional computational fluid dynamics (CFD) within representative elementary units coupled with a combined mesoscale—microscale predictive approach to apprehend the aerodynamic phenomena occurring at the macroscale in structured-packing-containing columns. The two-fluid model proved powerful in the prediction of the column hydraulics under various operational conditions such as atmospheric scrubbing or high-pressure/temperature distillation conditions for the Flexipac, Mellapak, Gempak and Montz packings. The satisfactory results obtained highlighted the breadth of applicability of the proposed approach especially for new designs or for optimal rating of existing equipments. The model can also prove powerful in the simulation and design of new geometries for structured packings. 相似文献
7.
Gra
yna Bartelmus Daniel Janecki 《Chemical Engineering and Processing: Process Intensification》2003,42(12):993-1005
In the present study the results of experiments have been presented whose aim was to determine the values of liquid holdup as well as gas pressure drop through the packing for systems foaming under the pulse flow regime. On the basis of 245 experimental points for the pulse flow regime the verification of the models describing the hydrodynamics of the system has been performed. Attention was focused on the models of Benkrid et al. (Chem. Eng. Sci. 52 (1997) 4021), Pina et al. (AIChE J. 47 (2001) 19) and Fourar et al. (Chem. Eng. Sci. 56 (2001) 5987). It has been concluded that none of the models analysed describes the hydrodynamics of the foaming systems with enough accuracy. Next, based on our own data-base the verification has been carried out of parameters of Benkrid et al. (Chem. Eng. Sci. 52 (1997) 4021) (‘drift flux’ model for L and boundary layer model for ΔP/H) and Pina et al. (AIChE J. 47 (2001) 19) models as well as the estimation of the values of F*-functions of Fourar et al. (Chem. Eng. Sci. 56 (2001) 5987) model. Using as the criterion the accuracy of estimation of the values of (ΔP/H) the best results have been obtained by applying Fourar et al. (Chem. Eng. Sci. 56 (2001) 5987) model (for the Ergun constants determined experimentally). The introduction of the estimated F*-functions into the equations of the model (Eqs. 11 and 12) makes it possible to estimate the liquid holdup with the average absolute relative error not exceeding 9.8% and the pressure drop with an error less than 26%. 相似文献
8.
Safa A. Al-Naimi Farah Talib Jasim Al-Sudani Essam K. Halabia 《Chemical Engineering Research and Design》2011,89(7):930-939
The hydrodynamics in a trickle bed reactor (TBR) in non-ambient conditions are studied for air-water and air-acetone (pure organic liquid of low surface tension) systems. A flow map experiments for air-water and air-acetone systems are performed in a pilot plant reactor of 0.05 m i.d. and 1.25 m height. It has been demonstrated from the experimental results that the pressure drop tends to increase with increasing superficial gas and liquid velocity and reactor pressure, while it tends to decrease with increasing bed temperature. The results also show that the dynamic liquid holdup increases with increasing liquid velocity and decreases with increasing superficial gas velocity, reactor pressure and bed temperature. The dynamic liquid holdup and pressure drop values are obviously higher than those measured for air-water system at the same fluid fluxes, reactor pressure and bed temperature due to the surface tension effects. For higher reactor pressure and temperature, the trickle to pulse transition boundary shifts towered higher superficial velocities of both gas and liquid. 相似文献
9.
Yaojie CaoPing Li Jinghong ZhouZhijun Sui Xinggui Zhou 《Chemical Engineering and Processing: Process Intensification》2011,50(10):1108-1114
A carbon nanofiber (CNF)/graphite felt composite was synthesized by growing CNFs on the surface of graphite fibers and was used as the packing of a fixed bed reactor under two phase flow conditions. The pressure drop, axial dispersion and mass transfer in the liquid were studied by experiment and by piston dispersion exchange (PDE) model. It was shown that the pressure drop and total liquid up could be predicted by the slit model in an acceptable accuracy. The axial dispersion in the liquid phase in the composite and the mass transfer between the dynamic and static liquid are higher than in the packed bed of solid particles owing to the porous and fluffy CNF layer on the carbon felt fiber. 相似文献
10.
Rodrigo J.G. Lopes 《Chemical engineering science》2009,64(8):1806-486
Computational fluid dynamics (CFD) has been used as a successful tool for single-phase reactors. However, fixed-bed reactors design depends overly in empirical correlations for the prediction of heat and mass transfer phenomena. Therefore, the aim of this work is to present the application of CFD to the simulation of three-dimensional interstitial flow in a multiphase reactor. A case study comprising a high-pressure trickle-bed reactor (30 bar) was modelled by means of an Euler-Euler CFD model. The numerical simulations were evaluated quantitatively by experimental data from the literature. During grid optimization and validation, the effects of mesh size, time step and convergence criteria were evaluated plotting the hydrodynamic predictions as a function of liquid flow rate. Among the discretization methods for the momentum equation, a monotonic upwind scheme for conservation laws was found to give better computed results for either liquid holdup or two-phase pressure drop since it reduces effectively the numerical dispersion in convective terms of transport equation.After the parametric optimization of numerical solution parameters, four RANS multiphase turbulence models were investigated in the whole range of simulated gas and liquid flow rates. During RANS turbulence modelling, standard k-ε dispersed turbulence model gave the better compromise between computer expense and numerical accuracy in comparison with both realizable, renormalization group and Reynolds stress based models. Finally, several computational runs were performed at different temperatures for the evaluation of either axial averaged velocity and turbulent kinetic energy profiles for gas and liquid phases. Flow disequilibrium and strong heterogeneities detected along the packed bed demonstrated liquid distribution issues with slighter impact at high temperatures. 相似文献
11.
A model for the prediction of pressure drop and liquid holdup for trickling flow in packed bed reactors has been developed, based on the relative permeability concept. The relative permeabilities for gas and liquid as functions of corresponding phase saturations have been studied with 1300 newly measured data pairs of pressure drop and liquid holdup obtained for a wide range of commercially relevant operating conditions (including pressures up to 50 bar) as well as types of packing (both in terms of size and shape). The relative permeabilities are found to be solely the functions of corresponding phase saturations and it is shown that the functional form of the correlations developed, which are otherwise purely empirical by nature, has its roots in the physics of flow at the microscale level. The proposed model requires no prior experimental knowledge about the packed bed and is able to predict liquid holdup and pressure drop to within 5% and 20%, respectively, regardless of the type of packing or operating range investigated. 相似文献
12.
The influence of liquid viscosity on liquid hold-up in structured packings under co-current gas–liquid downward flow operation has been investigated for liquid viscosity from 1 to 20 cP. The liquid hold-up has been determined on a 400 mm internal diameter column by gamma tomographic cross-sectional measurements. An important influence of the viscosity on the liquid hold-up is observed. It is shown that, the widely used model supported by Bravo et al. [J.L. Bravo, J.A. Rocha, J.R. Fair, Hydrocarbon Process. January (1985) 91] assuming 1D fully established vertical liquid film flow does not agree with the experimental data. From experiments, the different assumptions used in the 1D model are discussed. On the basis of these results, a new correlation is proposed, which enables to calculate the hold-up from the viscosity, the liquid flow rate and the geometry of the packing. A comparison with data of literature is done. 相似文献
13.
David Edouard 《Chemical engineering science》2006,61(12):3875-3884
Experiments were conducted to study the role of gas velocity in the capture of fine particles from non-aqueous suspensions circulated in co-current down-flow trickle flow reactors. The rate of filtration and pressure drop in the trickle bed were investigated using surfactant-stabilized kaolin-containing kerosene suspensions. It was determined that the filter coefficient was sensitive to liquid holdup and specific deposit. The initial collection efficiencies were compared with predictions based on existing theories. Agreement was generally not good with the exception for the limit of low superficial gas velocity. A general correlation establishing the relationship between the filtration rate and the liquid holdup in trickle beds was proposed to reconcile the experimental data with existing filtration theories. 相似文献
14.
The shear rates that exert angular deformation on spherical particles have been measured. The particles are mimiced by a spherical probe. The probe has been immersed in various impeller-agitated power law fluids. The fluids are aqueous dispersions of polymers, e.g. CMC, xanthan gum and starch. The probe has been positioned in various points of a stirred vessel and at various angles. Angle-averaged shear rate distributions were produced. The distributions obtained are characteristic for the specific impeller flow patterns. The flow patterns have been identified by computational fluid dynamics (CFD). Two types of impellers representative for the flat and the fluid-foil blade design, i.e., a Rushton flat-blade turbine (RT) and a Narcissus impeller (NS) are studied. The effects of rheological properties and blade design on the ‘shear-rate-on-particles’ distribution are examined. The local shear field non-uniformity has been uncovered and compared in terms of the CFD-generated time-averaged velocity and deformation rate profiles. The ‘shear-rate-on-particles’ distribution apart from the impeller is found to follow qualitatively the time-averaged inner flow shear rate distribution. Referring to impeller speed 5-12.5 Hz, the dimensionless wall shear rate varied between 200 and 1000. In power law fluids, the shear rate on particles decreased up to 50%. The fluid-foil NS-generated shear field was found comparable to the shear field induced by conventional flat-blade turbines and appeared in cases less sensitive to polymer presence. The shear rate produced by the fluid-foil impeller in the highly shear-thinning model solution (n∼0.4) exceeded the flat-blade RT-imposed shear rate. The analysis has been extended to skin friction drag on particles. It is shown that, while exerting an undoubtedly greater angular deformation in water-like fluids, in polymer presence the conventional flat-blade turbine introduces a flow geometry that imposes particle drag that is close or in some cases even less than the one generated by the fluid-foil impeller. The fact implies a weak shape effect of radial turbines on shear-sensitive particles or particle dispersions in power law liquids. 相似文献
15.
Hydrodynamics of gas–liquid flow in micropacked beds: Pressure drop,liquid holdup,and two‐phase model
下载免费PDF全文

Jisong Zhang Andrew R. Teixeira Lars Thilo Kögl Lu Yang Klavs F. Jensen 《American Institute of Chemical Engineers》2017,63(10):4694-4704
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017 相似文献
16.
Rodrigo J.G. Lopes 《Chemical engineering science》2007,62(24):7045-7052
An Euler-Euler computational fluid model was developed successfully for the hydrodynamic prediction of a trickle-bed reactor (TBR) designed for advanced wastewater treatment facilities. Catalytic wet air oxidation of phenolic acids was simulated in a TBR by means of computational fluid dynamic (CFD) in the temperature range and pressures . The hydrodynamic model validation was accomplished through the comparison of simulated pressure drop and liquid holdup with experimental data from the literature. In a broad range of gas and liquid flows studied (G=0.10-0.70 and ) at different operation conditions, CFD demonstrated the considerable effect of operating pressure in pressure drop, whereas a minor influence was detected for the liquid holdup. CFD runs were then performed for the catalytic wet air oxidation of aqueous phenolic acids solution. The reactor behaviour was analysed by means of total organic carbon profiles which reflected the influence of temperature, pressure, gas-liquid flows and initial pollutant concentration. 相似文献
17.
R. Tschentscher M. Schubert A. Bieberle T.A. Nijhuis J. van der Schaaf U. Hampel J.C. Schouten 《Chemical engineering science》2011,(14):14
Rotating solid foam reactors have already proven to show high mass transfer rates and to be a potential alternative to slurry reactors. The rotation of a foam block stirrer results in a high mass transfer and in the development of different reactor sections showing specific hydrodynamics and gas holdup distributions. In order to optimize the reactor system the hydrodynamics in a lab scale reactor are studied using γ-ray tomography, a powerful method to measure the gas holdup in three-phase reactors. The influence of liquid properties, such as viscosity and surface tension, and the rotational speed on the gas/liquid distribution in the different reactor sections is investigated. Especially the viscosity has a strong effect on the entrapment of gas bubbles in the foam block structure, while the surface tension is the dominant parameter in the outer reactor section. The influence of these parameters on the inset of foaming and the collapse of the gas/liquid dispersion is investigated. Conclusions on the mass transfer performance are drawn and recommendations for further optimizations of the reactor design and the operational conditions depending on the liquid properties are developed. 相似文献
18.
CFD study on particle-to-fluid heat transfer in fixed bed reactors: Convective heat transfer at low and high pressure 总被引:1,自引:0,他引:1
Computational fluid dynamics (CFD) has proven to be a reliable tool for fixed bed reactor design, through the resolution of 3D transport equations for mass, momentum and energy balances. Solution of these equations allow to obtain velocity and temperature profiles within the reactor. The numerical results obtained allow estimating useful parameters applicable to equipment design. Particle-to-fluid heat transfer coefficient is of primal importance when analyzing the performance of a fixed bed reactor. To gain insight in this subject, numerical results using a modified commercial CFD solver are presented and particle-to-fluid heat transfer in fixed beds is analyzed. Two different configurations are studied: forced convection at low pressure (with air as circulating fluid) and mixed (i.e., free+forced) convection at high pressure (with supercritical CO2 as circulating fluid). In order to impose supercritical fluid properties to the model, modifications into the CFD code were introduced by means of user defined functions (UDF) and user defined equations (UDE). The obtained numerical data is compared to previously published data and a novel CFD-based correlation (for free, forced and mixed convection at high pressure) is presented. 相似文献
19.
In order to reduce power consumption and conveying velocity, a pneumatic conveying system where a dune model is mounted in a pipeline is proposed in this paper. The experimental study focuses on the effect of the mounted dune model in the horizontal pneumatic conveying system in terms of pressure drop, power consumption and conveying velocity. The test pipeline consisted of a horizontal smooth acrylic tube with an inside diameter of 80 mm and a length of about 5 m. Polyethylene spherical particles with a density of 952 kg/m3 and diameters of 2.3 and 3.3 mm are used as conveying materials. The mean air velocity is varied from 9 to 16 m/s, and the solid mass flow rate is from 0.25 to 0.45 kg/s. Firstly, the effect of the dune model location on pneumatic conveying is experimentally studied. It is found that in the lower air velocity range, the pressure drop of the pneumatic conveying with a mounted dune model is lower than that of a conventional pneumatic conveying system. A lower conveying velocity and energy-saving conveying can be realized by installing a dune model in the conveying pipe. Especially the case of fixing the dune model on the bottom of the pipe at the inlet of particle feed is more effective. The particle flow patterns also show that the dune model reduces the deposition of particles. Then, the effect of different surface materials of the dune model is examined. By using a surface material of the dune model with a large coefficient of restitution, the pressure drop of conveying large particles is the lowest. When conveying relatively small particles, however, the pressure drop becomes the lowest by a small coefficient of restitution. The maximum reduction rates of the minimum velocity and power consumption by the dune model are about 19% and 34%, respectively. 相似文献
20.
Rodrigo J. G. Lopes Rosa M. Quinta‐Ferreira 《American Institute of Chemical Engineers》2009,55(11):2920-2933
Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and wetting phenomena, a Volume‐of‐Fluid (VOF) model was developed to simulate the multiphase flow in high‐pressure trickle‐bed reactor (TBR). As the accuracy of the simulation is largely dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation of the multiphase flow model. Several model solution parameters comprising different time steps, convergence criteria and discretization schemes were examined to establish model parametric independency results. High‐order differencing schemes were found to agree better with the experimental data from the literature given that its formulation includes inherently the minimization of artificial numerical dissipation. The optimum values for the numerical solution parameters were then used to evaluate the hydrodynamic predictions at high‐pressure demonstrating the significant influence of the gas flow rate mainly on liquid holdup rather than on two‐phase pressure drop and exhibiting hysteresis in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive radial planes of liquid volume fraction at different packed bed cross‐sections. © 2009 American Institute of Chemical Engineers AIChE J, 2009 相似文献