首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用硅酸钠溶液为激发剂制备碱矿渣(AAS)水泥砂浆,在80 ℃的1 mol/L氢氧化钠溶液中养护以加速碱-硅酸反应(ASR)进程,研究了激发剂碱含量和硅酸盐模数对ASR膨胀破坏的影响。结果表明,AAS砂浆中出现了危险性ASR膨胀破坏。激发剂中Na2O掺量大于4%(质量分数)时,砂浆在14 d龄期的ASR膨胀率超过0.1%,且当激发剂硅酸盐模数在1.2~2.0范围内时膨胀率更大。ASR产物主要分布在集料颗粒表面与AAS凝胶相接触的界面区,附近可观测到明显的裂缝扩展。ASR膨胀破坏同时引发了砂浆抗压强度损失。  相似文献   

2.
Recently, in Japan, two new-type hydraulic cements, high early strength type ecocement (HEC) and normal type ecocement (NEC), have been developed using incinerator ashes up to 50% of the raw materials. In this study, the compatibility of these ecocements with various types of reactive aggregates with respect to alkali-silica reaction (ASR) was studied. Ordinary Portland cement (OPC) and blast furnace slag cement (BFSC) were also used for a comparative study. Two types of the accelerated mortar bar expansion test, the JIS A1146 and the Danish methods, were used to clarify the expansion behavior of mortars made with the above cements. The influence of a combination of the chemical and mineralogical compositions of cement and the reactive components of aggregate on both the amount of ASR gel and the expansion rate of the mortar was also investigated. From the results, it was found that the expansion behaviors of mortars due to ASR varied significantly depending on a combination of both the mineralogical composition of cement and the reactive component of aggregate.  相似文献   

3.
龚建清  董雅竹  张浩  涂贞军  戴炜 《硅酸盐通报》2022,41(12):4361-4368
采用玻璃砂代替部分细骨料制备碱激发矿渣(AAS)砂浆后,研究了玻璃砂含量(0%、10%、20%、30%,质量分数)对AAS砂浆抗压强度、抗折强度、干燥收缩、导热系数和碱-硅酸反应(ASR)膨胀率的影响,并通过扫描电子显微镜(SEM)对微观机理进行了分析。结果表明:掺10%~30%的玻璃砂能显著提高AAS砂浆的早期抗压强度,但会略微降低28 d抗压强度;AAS砂浆的抗折强度随玻璃砂掺量的增加先增大后减小,10%掺量时最有利于3 d抗折强度,20%掺量时最有利于28 d抗折强度;AAS砂浆的干燥收缩、导热系数和ASR膨胀率均随玻璃砂掺量的增加而减小,与对照组相比,掺30%玻璃砂的AAS砂浆导热系数降低14.4%,56 d干燥收缩率降低27.6%,14 d ASR膨胀率降低39.6%,28 d ASR膨胀率降低34.5%;SEM分析发现玻璃砂表面有水化产物生成,其与胶凝材料的结合比石英砂更紧密,使AAS砂浆的微观结构更加致密。  相似文献   

4.
Sulfate attack on alkali-activated slag concrete   总被引:2,自引:0,他引:2  
This paper presents an investigation into durability of alkali-activated slag (AAS) concrete in sulfate environment. Two tests were used to determine resistance of AAS concrete to sulfate attack. These tests involved immersion in 5% magnesium sulfate and 5% sodium sulfate solutions. The main parameters studied were evolution of compressive strength, products of degradation, and microstructural changes. After 12 months of exposure to the sodium sulfate solution, the strength decrease was up to 17% for AAS concrete and up to 25% for ordinary Portland cement (OPC) concrete. After the same period of exposure to the magnesium sulfate solution, the compressive strength decrease was more substantial, up to 37% for OPC and 23% for AAS. The main products of degradation were ettringite and gypsum in the case of Portland cement and gypsum in AAS. OPC samples had significant expansion, cracking, and loss of concrete, while AAS samples were not expanded but cracked in the test. During experiments with the sodium sulfate solution, some increase in strength of AAS concrete was recorded, likely due to continuing hydration.  相似文献   

5.
The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a Pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductive coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive Pyrex rods in SMF mortars.  相似文献   

6.
Shrinkage of alkali-activated slag (AAS) cement is a critical issue for its industrial application. This study investigated the mechanisms and effectiveness of shrinkage-reducing agent (SRA) and magnesia expansive agent on reducing autogenous and drying shrinkage of AAS mortars that were activated by liquid sodium silicate (LSS) solution with modulus (SiO2/Na2O molar ratio) of 0-1.5. The results showed that the autogenous shrinkage of AAS mortars increased with the increase of LSS modulus from 0 to 0.5, then decreased as modulus increased up to 1.5. The drying shrinkage consistently increased with the increase in the modulus of LSS. The oxyalkylene alcohol-based SRA could significantly reduce the autogenous and drying shrinkage of AAS mortars while the magnesia expensive agent was comparatively less effective. The autogenous shrinkage of AAS mortars was inversely proportional to the internal relative humidity, while the drying shrinkage was more related to the mass loss of samples. Mathematical models were established to describe the autogenous and drying shrinkage behavior of AAS mortars.  相似文献   

7.
梁咏宁  陈李全  张迎  林旭健  季韬 《硅酸盐通报》2022,41(10):3556-3566
以Na2SO4和MgSO4溶液为侵蚀介质,研究了在浸泡环境下CaO-Na2CO3激发矿渣(CNS)砂浆和普通硅酸盐水泥(OPC)砂浆经硫酸盐侵蚀前后的抗折强度、抗压强度及不同深度处的SO2-4浓度,结合X射线衍射(XRD)、扫描电子显微镜(SEM)、压汞法(MIP)等测试方法分析了CNS砂浆和OPC砂浆的侵蚀产物及孔结构,对比讨论了Na2SO4和MgSO4对CNS砂浆和OPC砂浆的侵蚀机理。结果表明:CNS砂浆的水化产物主要是低Ca/Si比的水化硅铝酸钙(C-A-S-H),不存在氢氧化钙,碳酸钙的填充作用使其孔结构优于OPC砂浆,并且在相同侵蚀环境下,CNS砂浆的抗硫酸盐侵蚀能力大于OPC砂浆;MgSO4侵蚀环境下CNS砂浆的侵蚀产物主要是水镁石(腐蚀后期会带动试件表面的砂浆一起剥落)和无黏聚力的水化硅铝酸镁(M-A-S-H);与Na2SO4相比,MgSO4对CNS砂浆的腐蚀性更强。  相似文献   

8.
Suppression of alkali-silica reaction (ASR) expansion in mortar and concrete by the addition of lithium salts has been confirmed by some workers. It has been revealed that lithium hydroxide tended to reduce the reaction between sodium or potassium hydroxide and reactive silica, and that the ASR gel incorporating lithium was less expansive. However, it has not been reported how the addition of a lithium salt influenced the composition of the ASR gel. The calcium in ASR gel is considered to play an important role in the expansion of the gel. Thus, it is significant to characterize ASR gel composition in mortars containing lithium salts by BSE-EDS analysis. This study aims to discuss the mechanisms of suppression of ASR expansion in mortar by lithium salts from the viewpoint of ASR gel composition. The average CaO/SiO2 ratio in ASR gels decreased with increasing amount of added lithium salts. It should be noted that the extent of variations in the CaO/SiO2 ratio in ASR gels significantly decreased with increasing amount of lithium salts. The addition of relatively small amounts of LiOH and Li2CO3 resulted in increased expansion. We also obtained an unexpected result that ASR gels became homogeneous with respect to their CaO contents at high dosage levels. However, the reduction in average CaO/SiO2 ratios and the homogenization in the CaO content of ASR gels due to the addition of lithium salts may not be related to the expansion of mortars.  相似文献   

9.
In recent years, several cases of damage to concrete structures due to sulfate exposure have occurred essentially in the above ground parts of structures. Such distress, often characterized by white efflorescence and surface scaling, is driven by salt crystallization in pores and/or repeated reconversions of certain sulfates between their anhydrous and hydrated forms under cycling temperature and relative humidity (RH). However, the effect of the water/cementitious materials ratio (w/cm), pozzolanic additions, and other parameters on the durability of cement-based materials under such exposure conditions is still misunderstood. In this study, 12 cement mortars having different w/cm (0.30, 0.45, and 0.60) and made with ordinary portland cement (OPC) or OPC incorporating 8% silica fume, 25% class F fly ash, or 25% blast furnace slag were made. Standard bars from each of these mortars were submerged in both 10% magnesium sulfate (MgSO4) and 10% sodium sulfate (Na2SO4) solutions; their expansion and surface degradation was monitored for up to 9 months. In addition, cylinders made from these 12 mortars were partially submerged in 50-mm-deep 10% MgSO4 and 10% Na2SO4 solutions. Half of the cylinders were maintained under constant temperature and RH, whereas the others were subjected to cycling RH. The effect of the w/cm and mineral additions on the classic chemical sulfate attack and development of efflorescence was investigated, and the results are discussed in this article.  相似文献   

10.
Experimental research was performed to relate specific cement characteristics to expansion due to sulfate attack. Twenty-one North American cement of statistically diverse chemical composition were used in the study. ASTM 1012 “Standard Test Method for Length Change of Hydraulic Cement Mortars Exposed to a Sulfate Solution” was performed using mortars prepared with each of the cement. First-order and multivariate relationships between cement characteristics and sulfate expansion were correlated at different ages. Analysis revealed that while tricalcium aluminate (C3A) has typically been targeted as the chief contributor to sulfate attack, iron oxide (Fe2O3) or tetracalcium aluminoferrite (C4AF) content, combined with total equivalent alkalis, showed a much stronger negative correlation with expansions at all ages. These results are in agreement with a broad spectrum of sulfate expansion theories and can provide a better means of specifying sulfate-resistant cement.  相似文献   

11.
Studies were undertaken to produce reactive pozzolana i.e. metakaolin from four kaolinitic clays collected from different sources in India. The metakaolin produced from these clays at 700-800 °C show lime reactivity in between 10.5 to 11.5 N/mm2 which is equivalent to commercially available calcined clay Metacem-85. The microstructure of the metakaolin has been reported. The effect of addition of metakaolin up to 25% in the Portland cement mortars was investigated. An increase in compressive strength and decrease of porosity and pore diameter of cement mortars containing metakaolin (10%) was noted over the cement mortars without metakaolin. The hydration of metakaolin blended cement mortars was investigated by differential thermal analysis (DTA) and scanning electron microscopy (SEM). The major hydraulic products like C-S-H and C4AH13 have been identified. Durability of the cement mortars with and without metakaolin was examined in different sulphate solutions. Data show better strength achievement in cement mortars containing 10% MK than the OPC mortars alone.  相似文献   

12.
The tolerance limit for chloride in ordinary Portland cement (OPC) and blended cements such as Portland pozzolana cement (PPC) and Portland slag cement (PSC) was assessed by cyclic polarisation. This study covers both cement extracts and mortar. The salient features of this investigation were: in extracts, the tolerance limit for chloride actually doubles for PSC when compared to PPC and OPC. The tolerance limit for chloride for various mortars follows the order: PSC > PPC > OPC. In OPC and PPC mortar, the repassivation potential (E rep) shifted negatively with higher amounts of free chloride but in PSC mortar E rep shifted positively (+590 mV) even in the presence of 5,000 ppm of free chloride. PSC takes longer time (50 days) to reach E rep indicating perfect passivity maintained for the embedded steel.  相似文献   

13.
The resistance of alkali silicate‐activated slag mortars to crack propagation is explored. With increasing SiO2‐to‐alkali oxide ratio (Ms) of the activating solution (between 1.0 and 2.0), the flexural strengths, fracture energies, and the strain energy release rates (crack resistance, GR) are noted to increase. The GR values, especially of the systems with Ms of 1.5 and 2.0, are higher than that of ordinary portland cement (OPC) mortar. In contrast, the fracture process zone (FPZ) was observed to be smaller for the alkali‐activated slag mortars, with higher localized strains. Similarly, the FPZs also shrink with increasing Ms. These responses are related to the differences in the reaction products in these systems. The fundamental differences in the fracture response of these binder systems are elucidated through tracking the FPZ development. The crack extension‐crack tip opening displacement relations and its relationship with the inelastic strain energy release rates are also used to bring out the differences between the binder systems.  相似文献   

14.
The influence of the LiNO3 on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO3 decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q3 dominated) network of the ASR product into a less structured, Q2 dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO3 decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR.  相似文献   

15.
In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.  相似文献   

16.
The microstructural and microchemical development of heat-cured Portland cement mortars containing silica fume, metakaolin, blast-furnace slag, and fly ash were analysed using pore solution analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). Incorporation of these materials into the mixture modifies the composition of the C-S-H gel, the quantities of the hydration products, and the microstructure. Ettringite was formed during moist storage in all specimens, but was not accompanied by expansion where a sufficient amount of metakaolin, blast-furnace slag, or a suitable fly ash replaced a proportion of the Portland cement; replacement with silica fume was not as effective at eliminating expansion. The different behaviour of silica fume from the other supplementary cementing materials is believed to reflect a difference in the way ettringite is formed in the presence of Al2O3-bearing mineral admixtures.  相似文献   

17.
Effect of modified zeolite (MZ) on the ASR expansion was analyzed, and comparison between MZ and other mineral admixtures such as fly ash and ground blast furnace slag was made according to ASTM C441. It is shown that the modified zeolite derived from immersion of natural zeolite(NZ) in 2 N NH4Cl solution might decrease the concentration of soluble alkalis in pore solution more effectively, as the alkali ions could be exchanged by NH4+ existed in MZ with formation of NH3·H2O, as a result, the expansion due to alkali-silica reaction (ASR) was controlled consequently. In ASTM C441 test, the 14-day expansion of the specimen incorporating 5% of MZ was less than 0.1%, while the percentage of the fly ash and blast furnace slag with the same efficiency was about 25% and 40%, respectively. Physical properties of cement incorporating 5% of MZ, such as normal consistency, setting time, bending and compressive strength also met the requirement of the Chinese national standard.  相似文献   

18.
研究了海水拌和与海水养护条件下高贝利特硫铝酸盐水泥(HB-CSA)和普通硅酸盐水泥(OPC)胶砂的抗压强度和抗折强度,采用等温量热法、X射线衍射分析法和热重分析法表征了两种水泥的水化过程和水化产物,分析了海水对HB-CSA水化过程和力学性能的影响。结果表明:海水拌和未明显影响HB-CSA的早期水化过程,海水拌和与海水养护未改变其主要水化产物类型;海水拌和显著加快了OPC的早期水化,海水中的氯盐与OPC的水化产物反应,导致水化氯铝酸钙(Friedel盐)的生成。海水拌和与海水养护对HB-CSA的抗压强度影响较小,但降低了OPC的后期抗压强度。海水养护对HB-CSA和OPC抗折强度的提高较为明显,钙矾石(AFt)含量的增加是抗折强度提高的主要原因。HB-CSA的水化产物中未见Ca(OH)2和单硫型水化硫铝酸钙(AFm),避免了海水侵入后过量CaSO4·2H2O和AFt生成造成的混凝土膨胀开裂和强度下降的危害。  相似文献   

19.
通过测长试验,研究了三类碱矿渣水泥(AASC)砂浆的碱集料反应(AAR)引起的膨胀,分析了碱组分种类、碱质量分数、活性集料质量分数和矿种类等因素对AASC砂浆AAR膨胀率的影响,综合宏观和微观测试结果,探讨了碱矿渣混凝土的碱集料反应机理,结果表明,AASC系统出现危险性碱集料反应的可能性远低于普通水泥系统 。  相似文献   

20.
刘永道  卢都友  郑彦增  许仲梓 《硅酸盐学报》2012,40(5):696-697,698,699,700,701,702
为阐明典型活性组分(无定型SiO2)在地质聚合物中的作用行为和效应,探索地质聚合物体系中碱-集料反应评价方法,研究常温(23℃)和38℃湿气养护(相对湿度〉95%)、80℃在1 mol/L NaOH溶液浸泡及150℃在10%(质量分数)的KOH溶液压蒸下,含石英玻璃集料地质聚合物砂浆的变形行为,采用扫描电镜、电子散射能谱研究产物的组成和微观结构。结果表明:4种养护条件下,特别是在传统普通硅酸盐水泥(OPC)体系所规定的养护条件和龄期内,含石英玻璃集料地质聚合物砂浆没有发生有害膨胀;但是随养护条件不同,地质聚合物基体和石英玻璃可能经历不同的化学反应过程,进而导致不同的变形行为,特别是在高温且有外碱介入时,地质聚合物基体在后期会产生膨胀效应。不宜采用单一的适于OPC体系的高温、高碱快速检测混凝土碱-集料反应的检测方法来评价地质聚合物体系中的碱-集料反应行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号