首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium sulfate attack was studied on C3S mortars, along with ASTM Type I Portland cement (PC) mortars, in an attempt to independently evaluate the effect of gypsum formation on the performance. The quantity of gypsum and ettringite, as measured by differential scanning calorimetry (DSC), increased with the time of immersion in the sulfate solution. An increase in length of the mortar specimens was also registered along with the increase in the quantity of gypsum. This result suggests that the formation of gypsum could be expansive. Indeed, considerable expansion, although delayed compared to PC mortars, was observed in the C3S mortars. Thus, it can be concluded that the expansion of the PC mortars occurred due to the combined effect of gypsum and ettringite formation, while the expansion of C3S mortars occurred as a result of gypsum formation.Thaumasite formation as small inclusions was also detected in both the C3S and the PC mortars, especially in regions of high gypsum deposition. The formation of thaumasite, despite the absence of carbonate bearing minerals and low temperatures, could be because of the carbonation of the surface zones of the mortars. However, it would be speculative to attribute any expansion to the formation of thaumasite, since it was detected only in minute amounts in the microstructural investigation.  相似文献   

2.
This paper aims to clarify the influence of the clinker SO3 on the cement characteristics. The impact on the strength development rate and the level of sulfate resistance were studied .The results show that increasing the amount of clinker SO3 at low alkali level reduces the percentages of the tricalcium aluminate (C3A) and alite as well as the alite/belite ratio, leading to a modification in the cement quality.For these reasons cements produced from a clinker containing high sulfate and low alkali, have slower strength development and higher sulfate resisting level than that produced with low sulfate clinker.  相似文献   

3.
The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C3A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C3A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C3A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.  相似文献   

4.
Adsorption characteristics of various superplasticizers on portland cement component minerals were investigated. Adsorption isotherms of various types of superplasticizers and ζ-potentials of cement component minerals at the maximum adsorption of the superplasticizers were measured. The value of the adsorption isotherm was calculated from the amount of the superplasticizer adsorbed on a cement component mineral in an equilibrated solution. The maximum amounts of adsorption and the adsorption isotherms varied with types of component mineral and superplasticizer. For all types of superplasticizers, a larger amount of superplasticizer was adsorbed on C3A and C4AF than C3S and C2S. However, the equilibrated concentration of each superplasticizer at the maximum adsorption was not influenced by types of superplasticizer. Without superplasticizer, C3S and C2S had negative ζ-potential. On the contrary, C3A and C4AF had positive ζ-potential. Therefore, accelerated coagulation of cement particles might occur due to their electrostatic potentials that are opposite each other. However, all component minerals of cement had negative ζ-potential when they were mixed with any superplasticizer. Fluidity of fresh cement paste is improved due to electrostatic repulsion acting between particles.  相似文献   

5.
The influence of slag (S), fly ash (FA) and silica fume (SF) on the sulfate resistance of limestone cements was evaluated. Hardened pastes were exposed to MgSO4 solution at 5 °C. Visible changes of the samples during the exposure were followed. Absorption of sulfate was measured and changes in mineralogical composition were evaluated by thermogravimetric analysis and X-ray diffraction (XRD). It was found that among admixtures used, only the addition of silica fume to limestone cement significantly improved its sulfate resistance. Cement with lower contents of C3A and C3S also showed favorable performance compared to cement having higher contents of these minerals.  相似文献   

6.
This review summarizes the results of sulfate performance in laboratory and field tests where limestone is used as a constituent of cement (PLC) or as a sand replacement where it is particularly beneficial to the properties of self compacting concretes (SCC).Laboratory studies on paste, mortar or concrete specimens exposed to Na2SO4 and MgSO4 solutions in a wide range of concentrations at different temperatures as well as mixtures with different compositions, cement compositions and limestone proportions are considered in a conceptual analysis as for the resistance to external sulfate attack and, especially, thaumasite sulfate attack.A detailed analysis of environmental aggressiveness (concentration, temperature and pH), mixture composition and cement composition used in each study are presented for PLC and SCC. Reported field studies are also shown, only a few cases have used limestone filler in their composition. A conceptual graphical analysis is then proposed to relate the degree of surface deterioration and mineralogical composition of attacked surface to the main variables of external sulfate attack: water/cementitious material ratio, limestone content and C3A content of the cement. Observation of graphical analysis clearly shows that deterioration by ESA is mainly governed by effective w/c ratio and C3A content of the cement. Surface damage is controlled when low effective w/c ratio and low C3A are used. In MgSO4 solution, low temperatures increase the degree of deterioration. Thaumasite is the last attack stage in the different sulfate environments.  相似文献   

7.
The formation of thaumasite was investigated with the progressive equilibrium approach (PEA). This approach experimentally simulates the conditions of various levels of sulfate addition in hardened cement pastes. The influence of limestone, time, C3A content, temperature and leaching on thaumasite formation was investigated. The results show that thaumasite formation is favoured at lower temperatures (8 °C) independently of the type of cement clinker (high or low C3A content) used. Thaumasite was found to form only in systems where limestone was present and where sufficient sulfate had been added. Thaumasite precipitated only in systems where the Al present has already been consumed to form ettringite and the molar SO3/Al2O3 ratio exceeded 3. In leached samples (reduction of portlandite and alkalis) slightly less thaumasite was formed whereas gypsum and ettringite are favoured under these conditions. The PEA, used to investigate the chemical aspects of sulfate attack was found to be a good tool for simulating external sulfate attack. Generally, thaumasite was detected were it was modelled to be stable in significant amounts. However, in this study equilibrium conditions were not reached after 9 months.  相似文献   

8.
The purpose of this study is to determine the effect of cement C3A content, temperature and composition of the immersion medium (water, gypsum and magnesium sulphate solution) on the rate of thaumasite formation in cement mortars. It also aims to ascertain how the C3A content influences the composition of the salt formed.The mortar prisms for this study were made with two different cements, one with low and the other with high Al2O3 content, with or without gypsum and/or calcium carbonate. After hydration, curing and carbonation, the prisms were partially immersed in distilled water and stored at temperatures ranging from 0 to 5 °C for up to 5 years. Some of the prisms were immersed in a 2% (w/w) gypsum solution or in 1.4% (w/w) magnesium sulphate solution at ambient temperature. Samples were taken at different ages and mineralogical and micro-structurally characterised.Some of the specimens tested were observed to expand, in a process concurring with the formation of thaumasite or a solid solution of thaumasite and ettringite, at both ambient and cooler temperatures. A correlation was found between cement C3A content and the composition of the deterioration product involved in the expansive process: thaumasite forms in mortars made with low C3A cement, whereas mixed crystals or solid solutions of thaumasite and ettringite form in mortars made with high C3A content cement.  相似文献   

9.
The effects of adding ground limestone to high alumina cement mortar were studied. The hydration was carried out at 60°C to form the cubic hydrate C3AH6 directly, hence avoiding the conversion of CAH10 to C3AH6, and at 20°C. Other experiments involved subsequent carbonation with CO2 and thermal treatment. The formation of stable carbonated phases was evident even at very early ages.  相似文献   

10.
The objective of this work is to parametrize the early age hydration behavior of accelerated cement pastes based on the chemical properties of cement and accelerators. Eight cements, three alkali-free and one alkaline accelerators were evaluated. Isothermal calorimetry, in situ XRD and SEM imaging were performed to characterize kinetics and mechanisms of hydration and the microstructure development. The reactivity of all accelerators is directly proportional to their aluminum and sulfate concentrations and to the amount and solubility of the setting regulator contained in cement. Alite hydration is enhanced if a proper C3A/SO3 ratio (between 0.67 and 0.90) remains after accelerator addition and if limestone filler is employed, because undersulfated C3A reactions are avoided. Combinations of compatible materials are recommended to enhance the performance of the matrix and to prevent an undesirable hydration behavior and its consequences in mechanical strength development.  相似文献   

11.
The influence of cement characteristics such as cement fineness and clinker composition on the “flow resistance” measured as the area under the shear stress-shear rate flow curve has been investigated. Three different types of plasticizers namely naphthalene sulphonate-formaldehyde condensate, polyether grafted polyacrylate, and lignosulphonate have been tested in this context on 6 different cements. The flow resistance correlated well with the cement characteristic (Blaine·{d·cC3A + [1 − d]·C3S}) where the factor d represents relative reactivity of cubic C3A and C3S while cC3A and C3S represent the content of these minerals. It was found to be either a linear or exponential function of the combined cement characteristic depending on plasticizer type and dosage. The correlation was valid for a mix of pure cement and cement with fly ash, limestone filler (4%), as well as pastes with constant silica fume dosage, when the mineral contents were determined by Rietveld analysis of X-ray diffractograms.  相似文献   

12.
The expansive additive was produced from sulfate–calcium component and aluminate clinker, containing 60% Al2O3. The sulfate–calcium component is prepared by flue gas desulphurization gypsum and calcareous raw material mixture burning. The ground sulfate component, mixed with ground aluminate clinker transforms into the effective expansive addition to portland cement. The following main phases were present in this expansive material: anhydrite, calcium oxide and monocalcium aluminate.The expansive substance was added to CEM I 42.5 cement as 7 and 12% addition. The mixtures were subjected to the hydration process; the expansion was measured as a function of varying conditions. The linear changes, as well as the compressive/flexural strength were determined after 1, 3, 7 and 28 days. The initial and final setting time was also measured.The cement with 7% (by weight) expansive additive is a shrinkage-less material, while the mixture with 12% (by weight) expansive additive is an expansive binder.The samples were examined by XRD and SEM-EDS.  相似文献   

13.
This paper presents data on engineering properties such as compressive strength, visual change and expansion of mortar specimens incorporating limestone filler subjected to severe sulfate attack at ambient temperature. Specimens with four replacement levels of limestone filler (0, 10, 20 and 30% of cement by mass) were immersed in sodium and magnesium sulfate solutions with 33,800 ppm of SO42− concentration. In order to identify the products formed by sulfate attack, microstructural analyses such as XRD and SEM were also performed on the paste samples with similar replacement levels of limestone filler.The test results demonstrated that mortar and paste samples incorporating higher replacement levels of limestone filler were more susceptible to sulfate attack irrespective of types of attacking sources. However, the deterioration modes were significantly dependent on the types of sulfate solutions. Additionally, although the samples were exposed to sulfate solutions at 20 ± 1 °C, the deterioration was strongly associated with thaumasite formation in both sulfate solutions.The deterioration mechanism and resistance to sulfate attack of cement matrix incorporating limestone filler at ambient temperature is discussed in the light of the test results obtained.  相似文献   

14.
Following addition of 0.1, 0.25, 0.35, 0.5 and 1.0 per cent triethanolamine, studies have been made of the hydration and hardening characteristics of (a) tricalcium aluminate, (b) tricalcium aluminate + gypsum, (c) tricalcium silicate, (d) dicalcium silicate, and (e) portland cement. Triethanolamine (TEA) accelerated the hydration of 3CaO.Al2O3 and 3CaO.Al2O3-CaSO4.2H2O systems and extended the induction period of the hydration of 3CaO.SiO2. In portland cement paste TEA decreased the strength at all ages and setting characteristics were drastically altered, especially at higher TEA contents. Evidence was obtained also of the formation of a complex of TEA with the hydrating silicate phase.  相似文献   

15.
External Sulphate Attack on sulphate-resisting Portland cement concretes is a well-researched field. However, the effect of temperature on the performance of sulphate attack requires further attention. For this purpose, cubic mortars were made with sulphate resisting Portland cement (low C3A) and two types of sand, silica and limestone, which were then immersed in a 5% MgSO4 solution at different temperatures: 5, 20 and 50 °C, for 24 months. The deterioration of mortars due to magnesium sulphate attack was evaluated by measuring changes in mass, compressive strength, porosity and sorptivity. The X-ray diffraction was also used to determine the different mineral phases, and the pH of the conservation solutions was monitored. No damage was observed on the samples exposed at 50 °C. However, serious damage was noted on mortars made with silica sand exposed at 5 °C. Results show that high temperature improved some physical and mechanical properties and do not necessarily accelerate the degradation due to magnesium sulphate attack. Sulphate-resisting Portland cements with limited C3A content was found to be susceptible to Thaumasite Sulphate Attack. The type of sand has a remarkable effect on the performance of mortars at low temperature compared to high temperature. The samples with limestone sand showed better resistance against magnesium sulphate attacks.  相似文献   

16.
A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C3A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C3A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.  相似文献   

17.
Decalcification shrinkage of cement paste   总被引:3,自引:0,他引:3  
Decalcification of cement paste in concrete is associated with several modes of chemical degradation including leaching, carbonation and sulfate attack. The primary aim of the current study was to investigate the effects of decalcification under saturated conditions on the dimensional stability of cement paste. Thin (0.8 mm) specimens of tricalcium silicate (C3S) paste, white portland cement (WPC) paste, and WPC paste blended with 30% silica fume (WPC/30% SF) were decalcified by leaching in concentrated solutions of ammonium nitrate, a method that efficiently removes calcium from the solid while largely preserving silicate and other ions. All pastes were found to shrink significantly and irreversibly as a result of decalcification, particularly when the Ca/Si ratio of the C-S-H gel was reduced below ∼ 1.2. Since this composition coincides with the onset of structural changes in C-S-H such as an increase in silicate polymerization and a local densification into sheet-like morphologies, it is proposed that the observed shrinkage, here called decalcification shrinkage, is due initially to these structural changes in C-S-H at Ca/Si ∼ 1.2 and eventually to the decomposition of C-S-H into silica gel. In agreement with this reasoning, the blended cement paste exhibited greater decalcification shrinkage than the pure cement pastes due to its lower initial Ca/Si ratio for C-S-H gel. The similarities in the mechanisms of decalcification shrinkage and carbonation shrinkage are also discussed.  相似文献   

18.
The phenomenon of water vapour sorption by powdered cement constituents exposed to different relative humidities and temperatures was studied. The individual clinker phases C3S, C2S, C3A, C4AF, calcium sulfates and CaO were tested. Using a water sorption balance, the amount of chemically and physically sorbed water per unit of surface area of the powders and the relative humidity at which water sorption starts to occur on the phases were determined. Various cement clinker phases prehydrate very differently. CaO and C3A were found to be most reactive towards water vapour whereas the silicates react less. CaO starts to sorb water at very low RHs and binds it chemically. Beginning at 55% RH, orthorhombic C3A also sorbs significant amounts of water and binds it chemically and physically. Water sorption of C3S and C2S only begins at 74% RH, and the amount of water sorbed is minor. Calcium sulfates sorb water predominantly physically.  相似文献   

19.
It is known that concentrated solutions of CaCl2 can cause the breakdown of Portland cement concrete. Recently it has been shown that the severity of CaCl2 attack decreases with increasing temperature and above 40°C concrete is not affected. From the above observation it was inferred that the breakdown is due to some compound formation at temperatures below about 20°C. In order to gain a better understanding of the mechanisms of CaCl2 attack, powders of Portland cement (both anhydrous and partly hydrated) were shaken in CaCl2 solutions of various strengths up to 180 days. The temperatures of these suspensions were maintained at 40, 20 and 5°C. The X-ray diffraction and microscopic study of the reacted solids showed that (i) C3A.CaCl2.XH2O forms at all temperatures. (ii) concentrated solution of CaCl2 leaches out Ca(OH)2 irrespective of the temperature of storage: (iii) at temperatures below about 20°C complex salts containing CaCl2, Ca(OH)2 and/or CaCO3 crystallalise out if the CaCl2 concentration of the mother liquor is 15% or higher. The results indicate that the breakdown of Portland cement concrete, when placed in a concentrated CaCl2 solution, is not due to the formation of C3A.CaCl2.XH2O or the leaching of Ca(OH)2 but associated with the formation of complex salts. Subsidiary experiments support the above hypotheses.  相似文献   

20.
In recent years, several cases of damage to concrete structures due to sulfate exposure have occurred essentially in the above ground parts of structures. Such distress, often characterized by white efflorescence and surface scaling, is driven by salt crystallization in pores and/or repeated reconversions of certain sulfates between their anhydrous and hydrated forms under cycling temperature and relative humidity (RH). However, the effect of the water/cementitious materials ratio (w/cm), pozzolanic additions, and other parameters on the durability of cement-based materials under such exposure conditions is still misunderstood. In this study, 12 cement mortars having different w/cm (0.30, 0.45, and 0.60) and made with ordinary portland cement (OPC) or OPC incorporating 8% silica fume, 25% class F fly ash, or 25% blast furnace slag were made. Standard bars from each of these mortars were submerged in both 10% magnesium sulfate (MgSO4) and 10% sodium sulfate (Na2SO4) solutions; their expansion and surface degradation was monitored for up to 9 months. In addition, cylinders made from these 12 mortars were partially submerged in 50-mm-deep 10% MgSO4 and 10% Na2SO4 solutions. Half of the cylinders were maintained under constant temperature and RH, whereas the others were subjected to cycling RH. The effect of the w/cm and mineral additions on the classic chemical sulfate attack and development of efflorescence was investigated, and the results are discussed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号