首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands matching the thermal requirements of the two reactions. The application studied here is the operation of a solid oxide fuel cell (SOFC) with both direct (DIR) and indirect (IIR) internal reforming of methane. Such internal reforming within a high-temperature fuel cell module can lead to an overall autothermal operation which simplifies the system design and increases efficiency. However, such coupling is not easy to achieve because of the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of heat available from the fuel cell reactions. Previous results have shown that the use of typical metal-based (e.g. Ni) IIR catalysts leads to full methane consumption but undesirable local cooling at the reformer entrance and the use of less active IIR catalysts (e.g. non-metals or diffusion limited nickel) leads to methane being carried-over into the SOFC anode (methane slippage). In order to evaluate performance in the latter case, a combined DIR and IIR SOFC steady-state model has been developed. Simulation results have shown that, lowering the IIR catalyst activity to prevent local cooling effects at the reformer entrance is not adequate, as the fast kinetics of the direct reforming reaction then lead to full methane conversion and steep temperature gradients in the first 10% of the fuel channel length. It is shown that the simultaneous reduction of the anode DIR reaction rate improves performance considerably. The system behaviour towards changes in current density, operating pressure, and flow configuration (counter-flow vs. co-flow) has been studied. Reduction of both DIR and IIR catalyst activity combined with a counter-flow operation leads to the best performance. System performance with an IIR oxide-based catalyst is also evaluated.  相似文献   

2.
Steam reforming of hydrocarbons such as natural gas is an attractive method of producing the hydrogen fuel gas required by fuel cells. It may be carried out external to the fuel cell or internally. The two types of fuel cell in which internal reforming is most appropriate are the molten carbonate (MCFC), operating at ca. 650°C and the solid oxide (SOFC) which currently operates above 800°C. At such temperatures, the heat liberated by the electrochemical reactions within the cell can be utilised by the endothermic steam reforming reaction. This paper reviews some of the catalytic aspects of internal reforming in these two types of cell. In the MCFC the major catalyst issue is that of long term activity in the presence of a corrosive alkaline environment produced by the cell's electrolyte. In Europe, this is being addressed by British Gas and others, in a programme part-funded by the European Commission. In this programme, potential catalysts for the direct internal reforming MCFC were evaluated in ‘out-of-cell’ tests. This has led to the demonstration of a 1 kW proof-of-concept DIR-MCFC stack and the start of a European ‘Advanced DIR-MCFC’ project. For the SOFC, it has been shown that state-of-the-art nickel cermet anodes can provide sufficient activity for steam reforming without the need for additional catalyst. However, anode degradation may occur when steam reforming is carried out for long periods. New anode materials could therefore offer significant benefits.  相似文献   

3.
Mathematical models for single electrode reversible heat and non-isothermal electromotive force (EMF) of a solid oxide fuel cell (SOFC) are developed. These models estimate the volumetric reversible heat generation and EMF of electrochemical reactions, within each electrode at local conditions of temperature and pressure, based on entropy change of half reactions. The resulting equations are thermodynamically consistent. They inherently obey the conservation of energy law as the electrochemical energy released added to the heat of reactions at each electrode equate the enthalpy change of the reacted species. The equations are implemented to model electrodes in a tubular micro- solid oxide fuel cell (TμSOFC). The thermodynamic consistency of the model is numerically confirmed as the enthalpy of the reactants equates the electric energy released by the cell plus the sum of electrode heats plus electrolyte Ohmic heat. The effect of thermal gradients on the cell's overall EMF is found to be negligible. The reversible and irreversible heat generation of each electrode are distinguished. Overall, the anode is found to be endothermic, and the cathode exothermic.  相似文献   

4.
This paper compares two dynamic, one-dimensional models of a planar anode-supported intermediate temperature (IT) direct internal reforming (DIR) solid oxide fuel cell (SOFC): one where the flow properties (pressure, gas stream densities, heat capacities, thermal conductivities, and viscosity) and gas velocities are taken as constant throughout the system, based on inlet conditions, and one where this assumption is removed to focus on the effect of considering the variation of local flow properties on the prediction of the fuel cell performance. The refined model consists of mass, energy, and momentum balances, and of an electrochemical model that relates the fuel and air gas compositions and temperatures to voltage, current density, and other relevant fuel cell variables. Simulations for steady-state and dynamic conditions have been carried out and the results obtained from the two models compared. For a co-flow SOFC operating on a 10% pre-reformed methane fuel mixture, with 75% fuel utilisation, inlet fuel and air temperatures of 1023 K, average current density of , and an air ratio of 8.5, the results show that, although the error incurred in the prediction of the flow properties in the first model is significant, there is good agreement between both models in terms of the overall cell performance: the maximum difference in the local temperature values is about 7 K and the cell efficiency differs by less than 1%. However, the discrepancies between the two models increase, especially in the fuel channel, when higher current density values are assigned to the cell.  相似文献   

5.
Fuel‐cell‐based auxiliary power units benefit from the high power density and fuel flexibility of solid oxide fuel cells (SOFCs), facilitating straightforward onboard fuel processing of diesel or jet fuel. The preferred method of producing the fuel gas is autothermal reforming, which to date has shown the best practical applicability. However, the resulting reformate is poor in methane, so that cell cooling is not supported by internal methane steam reforming. Accordingly, large flow rates of excess air are required to cool the stack. Hence, the power demand of the cathode air blower significantly limits the net electrical power output of the system and large cathode flow channels are required. The present work examines attempts to further increase the system efficiency in middle‐distillate‐fueled SOFC systems by decreasing the cathode air flow rates. The proposed concept is generally based on inducing endothermic methane steam reforming (MSR) inside the cells by augmenting the methane content in an upstream methanation step. Methanation, however, can only yield significant methane production rates if the reaction temperature is limited. Therefore, four process layouts are presented that include different cooling measures. Based on these setups, the general feasibility and the benefit of intermediate methanation are demonstrated.  相似文献   

6.
A test system based around a thin‐walled extruded solid electrolyte tubular reactor has been developed, which enables the fuel reforming catalysis and surface chemistry occurring within solid oxide fuel cells and the electrochemical performance of the fuel cell to be studied under genuine operating conditions. It permits simultaneous monitoring of the catalytic chemistry and the cell performance, allowing direct correlation between the fuel cell performance and the reforming characteristics of the anode, as well as enabling the influence of drawing current on the catalysis and surface reaction pathways to be studied. Temperature‐programmed reaction measurements can be carried out on anodes in an actual SOFC, and have been used to investigate the reduction characteristics of different anode formulations, methane activation and methane steam reforming, and to evaluate the nature and level of carbon deposition on the anode during reforming. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The effect of endothermic internal steam reformation of methane and exothermic fuel cell reaction on the temperature of a planar‐type anode‐supported solid oxide fuel cell was experimentally investigated as a function of current density and fuel utilization. We fabricated a large‐area (22 × 33 cm2) cell and compared temperature profiles along the cell using 30 thermocouples inserted through the cathode end plate at 750 °C under various conditions (Uf ∼50% at 0.4 A cm−2; Uf ∼70% at 0.4 A cm−2; Uf ∼50% at 0.2 A cm−2) with hydrogen fuel and methane‐steam internal reforming. The endothermic effect due to internal reforming mainly occurs at the gas inlet region, so this process is not very effective to cool down the hot spot created by the exothermic fuel cell reaction. This eventually results in a larger temperature difference on the cell. The most moderate condition with regards to thermal gradient on the cell corresponds to high fuel utilization (Uf ∼70%) and low current density (∼0.2 A cm−2). The electrochemical performance was also measured, and it was found that the current–voltage characteristics are comparable for the cell operated under hydrogen fuel and internal steam reforming of methane because of lower polarization resistance with high partial pressure of water vapor.  相似文献   

8.
板翅式反应器中甲醇水蒸气重整制氢   总被引:5,自引:1,他引:4       下载免费PDF全文
潘立卫  王树东 《化工学报》2005,56(3):468-473
研制了一种高效板翅式反应器,其特点是体积相对较小,便于放置,便于扩大规模;集预热、气化、重整、催化燃烧于一体;板翅式反应器内部热量利用合理,放热反应与吸热反应、气化与冷却之间实现了较好的热量耦合;可实现完全自供热.在反应器中进行了一系列甲醇水蒸气重整的实验,考察了不同条件对甲醇重整制氢过程的影响、对反应器床层温度分布的影响,及反应器的稳定性.另外,由于板翅式结构的良好传热性,甲醇水蒸气重整在获得较高转化率的同时重整气中CO浓度较低,且反应器的稳定性良好.  相似文献   

9.
SOFC内部重整反应与电化学反应耦合机理   总被引:1,自引:1,他引:0  
以经过预重整反应的混合气为原料的固体氧化物燃料电池(SOFC)内部,甲烷蒸气重整反应与电化学反应同时发生在阳极多孔介质中,二者受到不同的操作与设计参数的影响,对电池总体性能起着决定性作用。编制了三维数值模拟程序,对由多孔阳极层、气体流动管道、固体支撑平板构成的单个复合管道进行了研究。结果显示:重整反应主要发生在多孔材料靠近流动管道的薄层内,只有靠近管道入口处才能在较深处进行;电化学反应发生在多孔层与电解质的交界面处;重整反应生成的H2、CO扩散到多孔材料底部参加电化学反应;电化学反应生成的热量供重整反应使用。说明研究范围内,SOFC阳极复合通道具有较好的传热、传质性能,化学/电化学反应存在较好的耦合关系。  相似文献   

10.
飞行器速度的提高是航空航天领域的重要研究方向,基于此,发展高超声速飞行器技术具有重要的经济和军事意义。吸热型碳氢燃料为高超声速飞行器提供了重要保障。主要介绍了吸热型碳氢燃料及其吸热反应发展情况,重点关注了裂解和重整反应,分析了反应条件对热裂解反应的影响,考察了燃料分子结构与热裂解反应的关系,介绍了分子筛、金属和活性炭3种裂解催化剂的性能,同时总结了催化重整反应的研究进展。  相似文献   

11.
Landfill gas is a type of methane‐rich biogas which supplies renewable resources for clean fuels production. In this paper, the characteristics and optimum conditions of simulated landfill gas and biogas reforming reactions for H2 production are investigated. The temperature, varied from 373.15 K to 1273.15 K, and pressure, varied from 1.013 bar to 40.013 bar, applied for the reforming system are evaluated. In addition, the effect of steam concentration, traces of hydrocarbons, and the ratio of C/H/O are analyzed using thermodynamic theories. Both the calculation and analyzed results demonstrate that the reforming system is primarily comprised of endothermic reactions. It favors lower pressure and higher temperature. Traces of hydrocarbons would result in a slight increase to CO for this system. A high ratio of CO2 would result in more production of CO in the reforming process. Preliminary experiments on fuel cells indicate this gas‐reforming simulation is an elementary theory for fuel supply.  相似文献   

12.
In this research, the conditions at which a thermally coupled reactor – containing the Fischer–Tropsch synthesis reactions and the dehydrogenation of cyclohexane – operates have been optimized using differential evolution (DE) method. The proposed reactor is a heat exchanger reactor consists of two fixed bed of catalysts separated by the tube wall with the ability to transfer the produced heat from the exothermic side to the endothermic side. This system can perform the exothermic Fischer–Tropsch (F–T) reactions and the endothermic reaction of cyclohexane dehydrogenation to benzene simultaneously which can save energy and improve the reactions' thermal efficiency. The objective of the research is to optimize the operating conditions to maximize the gasoline (C5+) production yield in the reactor's outlet as a desired product. The temperature distribution limit along the reactor to prevent the quick deactivation of the catalysts by sintering at both sides has been considered in the optimization process. The optimization results show a desirable progress compared with the conventional single stage reactor. Optimal inlet molar flow rate and inlet temperature of exothermic and endothermic sides and pressure of exothermic side have been calculated within the practicable range of temperature and pressure for both sides.  相似文献   

13.
The new reactor concept for highly endothermic reactions at elevated temperatures with possible rapid catalyst deactivation based on the indirect coupling of endothermic and exothermic reactions in reverse flow, developed for irreversible reactions in Part I, has been extended to reversible endothermic reactions for the sequential reactor configuration. In the sequential reactor configuration, the endothermic and exothermic reactants are fed discontinuously and sequentially to the same catalyst bed, which acts as an energy repository delivering energy during the endothermic reaction phase and storing energy during the consecutive exothermic reaction phase. The periodic flow reversals to incorporate recuperative heat exchange result in low temperatures at both reactor ends, while high temperatures prevail in the centre of the reactor. For reversible endothermic reactions, these low exit temperatures can shift the equilibrium back towards the reactants side, causing ‘back-conversion’ at the reactor outlet.The extent of back-conversion is investigated for the propane dehydrogenation/methane combustion reaction system, considering a worst case scenario for the kinetics by assuming that the propylene hydrogenation reaction rate at low temperatures is only limited by mass transfer. It is shown for this reaction system that full equilibrium conversion of the endothermic reactants cannot be combined with recuperative heat exchange, if the reactor is filled entirely with active catalyst. Inactive sections installed at the reactor ends can reduce this back-conversion, but cannot completely prevent it. Furthermore, undesired high temperature peaks can be formed at the transition point between the inactive and active sections, exceeding the maximum allowable temperature (at least for the relatively fast combustion reactions).A new solution is introduced to achieve both full equilibrium conversion and recuperative heat exchange while simultaneously avoiding too high temperatures, even for the worst case scenario of very fast propylene hydrogenation and fuel combustion reaction rates. The proposed solution utilises the movement of the temperature fronts in the sequential reactor configuration and employs less active sections installed at either end of the active catalyst bed and completely inactive sections at the reactor ends, whereas propane combustion is used for energy supply. Finally, it is shown that the plateau temperature can be effectively controlled by simultaneous combustion of propane and methane during the exothermic reaction phase.  相似文献   

14.
In recent years, fuel cell technology has attracted considerable attention from several fields of scientific research as fuel cells produce electric energy with high efficiency, emit little noise, and are non-polluting. Solid oxide fuel cells (SOFCs) are particularly important for stationary applications due to their high operating temperature (1,073–1,273 K). Methane appears to be a fuel of great interest for SOFC systems because it can be directly converted into hydrogen by direct internal reforming (DIR) within the SOFC anode. Unfortunately, internal steam reforming in SOFC leads to inhomogeneous temperature distributions which can result in mechanical failure of the cermet anode. Moreover this concept requires a large amount of steam in the fed gas. To avoid these problems, gradual internal reforming (GIR) can be used. GIR is based on local coupling between steam reforming and hydrogen oxidation. The steam required for the reforming reaction is obtained by the hydrogen oxidation. However, with GIR, Boudouard and cracking reactions can involve a risk of carbon formation. To cope with carbon formation a new cell configuration of SOFC electrolyte support was studied. This configuration combined a catalyst layer (0.1%Ir–CeO2) with a classical anode, allowing GIR without coking. In order to optimise the process a SOFC model has been developed, using the CFD-Ace+ software package, and including a thin electrolyte. The impact of a thin electrolyte on previous conclusions has been assessed. As predicted, electrochemical performances are higher and carbon formation is always avoided. However a sharp decrease in the electrochemical performances appears at high current densities due to steam clogging.  相似文献   

15.
This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar DIR-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) tem-perature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current den-sity distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.  相似文献   

16.
物流分布对板翅式制氢反应器性能的影响   总被引:1,自引:0,他引:1  
建立了板翅式制氢反应器中的三维数学模型,并采用此模型对反应器内部的温度分布进行了数值计算,并且和实验结果相结合,对不同方式的燃烧气流分布的效果进行分析。计算和分析结果均表明:燃烧气流分布均匀与否对反应器性能的影响较大,通过改进气体分布可以有效地改善反应器内部的温度分布及反应性能。  相似文献   

17.
A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by exothermic reactions, without mixing of the endothermic and exothermic reactants, in closed-loop reverse flow operation. Periodic gas flow reversal incorporates regenerative heat exchange inside the reactor. The reactor concept is studied for the coupling between the non-oxidative propane dehydrogenation and methane combustion over a monolithic catalyst.Two different reactor configurations are considered: the sequential reactor configuration, where the endothermic and exothermic reactants are fed sequentially to the same catalyst bed acting as an energy repository and the simultaneous reactor configuration, where the endothermic and exothermic reactants are fed continuously to two different compartments directly exchanging energy. The dynamic reactor behaviour is studied by detailed simulation for both reactor configurations. Energy constraints, relating the endothermic and exothermic operating conditions, to achieve a cyclic steady state are discussed. Furthermore, it is indicated how the operating conditions should be matched in order to control the maximum temperature. Also, it is shown that for a single first order exothermic reaction the maximum dimensionless temperature in reverse flow reactors depends on a single dimensionless number. Finally, both reactor configurations are compared based on their operating conditions. It is shown that only in the sequential reactor configuration the endothermic inlet concentration can be optimised independently of the gas velocities at high throughput and maximum reaction coupling energy efficiency, by the choice of a proper switching scheme with inherently zero differential creep velocity and using the ratio of the cycle times.In this first part, both the propane dehydrogenation and the methane combustion have been considered as first order irreversible reactions. However, the propane dehydrogenation is an equilibrium reaction and the low exit temperatures resulting from the reverse flow concept entail considerable propane conversion losses. How this ‘back-conversion’ can be counteracted is discussed in part II Chemical Engineering Science, 57, (2002), 855-872.  相似文献   

18.
In the current research, an exothermic reaction is proposed to be coupled with naphtha reforming reactions. Hydrodealkylation (HDA) of toluene, which is a well-known petrochemical reaction, is discussed and is suggested as a potential exothermic reaction to be coupled with the endothermic naphtha reforming reactions. The first, the second, and the third reactor of the conventional naphtha reforming process have been substituted in three different cases by thermally coupled reactors and optimized parameters of the final case have been investigated. Considering lower operational costs due to the elimination of inter stage heaters, investigation of thermally coupled reactors has been the first priority of this research. The investigation shows that substitution of the first two reactors and, in the final case, all conventional reactors by the new configuration can improve the production yield of the aromatics by 14% and 21%, respectively compared with conventional naphtha reforming process. The final case has been optimized as well, and 45% and 11% improvement in aromatics and hydrogen production has been observed.  相似文献   

19.
In the present work the basic transport processes occurring in a planar solid oxide fuel cell (SOFC) were simulated. The Navier-Stokes and energy equations, including convective and diffusive terms, were numerically solved by the commercial CFD-ACE+ program along with the mass and charge transport equations. To achieve this, a three-dimensional geometry for the planar fuel cell has been built. It was also assumed that the feedstream was a mixture of methane and steam in a ratio avoiding carbon formation. In accordance with the literature, the steam reforming reaction, the water-gas shift reaction as well as electrochemical reactions were introduced to the model. The spatial variation of the mixture's velocity, the temperature profiles and the species concentrations (mass fractions) were obtained. Furthermore, the effect of temperature on the produced current density was investigated and compared to the outcomes from isothermal imposed conditions.  相似文献   

20.
Microscale autothermal reactors remain one of the most promising technologies for efficient hydrogen generation. The typical reactor design alternates microchannels where reforming and catalytic combustion of methane occur, so that exothermic and endothermic reactions take place in close proximity. The influence of flow arrangement on the autothermal coupling of methane steam reforming and methane catalytic combustion in catalytic plate reactors is investigated. The reactor thermal behavior and performance for cocurrent and countercurrent are simulated and compared. A partial overlapping of the catalyst zones in adjacent exothermic and endothermic channels is shown to avoid both severe temperature excursions and reactor extinction. Using an innovative, optimization‐based approach for determining the catalyst zone overlap, a solution is provided to the problem of determining the maximum reactor conversion within specified temperature bounds, designed to preserve reactor integrity and operational safety. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号