首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared using the solvent spinning method. N,N-dimethylacetamide was the solvent and ethylene glycol was employed as non-solvent additive. The effect of the concentration of ethylene glycol in the PVDF spinning solution as well as the effect of ethanol either in the internal or the external coagulant on the morphology of the hollow fibers was investigated. The prepared membranes were characterized in terms of the liquid entry pressure of water measurements, the gas permeation tests, the scanning electron microscopy, the atomic force microscopy, and the solute transport experiments. Ultrafiltration experiments were conducted using polyethylene glycol and polyethylene oxides of different molecular weights cut-off as solutes. A comparative analysis was made between the membrane characteristic parameters obtained from the different characterization techniques.  相似文献   

2.
The first oxygen permeation data of a dense hollow fiber perovskite membrane based on BaCoxFeyZrzO3 − δ are reported. The hollow fiber was prepared by a phase inversion process. Dense fibers were obtained with the following typical geometries: outer diameter, 800–900 μm; inner diameter, 500–600 μm; length, 30 cm. The O2-permeation through the hollow fiber perovskite membrane was studied in a high-temperature gas permeation cell under different operation conditions. The increase of the helium gas flow rate reduces the oxygen partial pressure (pO2) on the core side and a higher oxygen permeation flux is observed. High oxygen flux of 0.73 m3 (O2)/(m2 (membrane) h) was achieved at 850 °C under the operation parameters Fair (shell side) = 150 ml/min and FHe (core side) = 30 ml/min. The oxygen partial pressure dependence of the O2 permeation flux indicated an interplay of both surface reaction and bulk diffusion as rate limiting steps. During 5 days of permeation a high and stable oxygen flux was observed. X-ray diffraction patterns of fresh and spent membranes after the permeation measurements revealed that no degradation after oxygen permeation appears.  相似文献   

3.
Carbon hollow fiber membranes (CHFMs) derived from polymer blend of polyetherimide (PEI) and polyvinylpyrrolidone (PVP) were extensively prepared through stabilization under air atmosphere followed by carbonization under N2 atmosphere. The effects of the stabilization temperature on the morphological structure, chemical structure, and gas permeation properties were investigated thoroughly by means of scanning electron microscopy, Fourier transform infrared spectroscopy, and single gas permeation system. The experiment results indicate that the transport mechanism of small gas molecules of N2, CO2, and CH4 is dominated by the molecular sieving effect. Based on morphological structure and gas permeation properties, an optimum stabilization condition for the preparation of CHFM derived from PEI/PVP was found at 300°C under air atmosphere. The selectivity of ?55 and 41 for CO2/CH4 and CO2/N2, respectively, were obtained for CHFMs prepared at stabilization temperature of 300°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Masaaki Sekino 《Desalination》1995,100(1-3):85-97
A number of investigators have made efforts to develop various analytical models for hollow fiber type reverse osmosis (RO) module systems since the 1970s. However, a perfect analytical model, which can precisely explain the observed RO performances under a wide range of operating conditions has not been developed yet. The author previously proposed a precise analytical model called a friction-concentration-polarization model (FCP model) [1], which used the Kimura-Sourirajan model for transport phenomena of solute and water transport through a membrane, taking a mass transfer coefficient as local variables and taking a fiber-bore side pressure drop into account. In the application of this model, fundamental transport parameter of hollow fiber membranes were needed, and they were initially determined by a U-tube membrane test where the effect of concentration polarization could be neglected. Then a local mass transfer coefficient was estimated from experimental data using actual modules as a function of Reynolds and Schimidt numbers by a trial-and-error method for both brackfish water and seawater desalination cases. Using all of the above results, behaviors of hollow fiber modules under various operating conditions were estimated and compared with the results obtained from commercial size module experiments. Compared to other previous models, the FCP model is verified to be the best one to predict actual module performances. This model will be further extended to anlyze a change of transport parameters during long-term runs.  相似文献   

5.
An experimental investigation was carried out to reduce the concentration polarization at feeding interphase between feed solution and liquid membrane imposing flow instabilities. The periodic operation of the hollow fiber supported liquid membrane for separation of lanthanide metal by using D2EHPA as extractant dissolved in kerosene. The operating flow rate of the feed solution was varied according to a symmetric square wave function around time-average values of 200, 300 and 400 ml/min. Time periods ranging from 18 to 3 minutes and amplitudes of 50 and 100 ml/min were investigated. The results of these periodic tests were compared with results obtained from the conventional steadystate mode of operation. It has been found that the periodic operation leads to higher stripping concentration or higher ion flux than that obtained from the corresponding steady state operating conditions. This is because periodic operation disturbs concentration polarization in the boundary layer between the feed solution and liquid membrane. It has also been found that the ion flux increases with increasing amplitudes and decreasing time periods of the forcing function. However, when the period is less than 3 minutes the flux decreases because the liquid membrane is peeled out from the pores of hollow fiber.  相似文献   

6.
In order to gain insight into membrane fiber failure (i.e., loss of integrity), properties of five hollow fiber membranes and four hollow fiber modules were evaluated. Specifically, membrane material, membrane symmetry, fiber modulus of elasticity, fiber diameter and thickness, module potting technique, module flow pattern (inside-out or outside-in), and coliform breakthrough were investigated. The approach combined evaluation of the above properties with mathematical modeling of structure-fluid interactions to comprehensively evaluate the properties most important for maintaining hollow fiber membrane integrity. Tensile strength testing revealed that the strongest fiber was an asymmetric polyacrylonitrile membrane fiber. The weakest fiber was a symmetric polyethylene membrane fiber. Pilot plant testing on the four membrane modules revealed that membrane symmetry may be a more important factor than potting technique for hollow fiber integrity. Results from the SEM and tensile testing were used as input to a finite element analysis model used to evaluate time-dependent structure-fluid interactions. It was found that additional stresses at the juncture of the potting material and the hollow fiber membranes exist. These stresses likely lead to the formation of fractures.  相似文献   

7.
膜法烟气脱硫能耗低、传质面积大、分离效率高,可以有效地解决传统塔器内的液泛、漏液、夹带等问题。本文采用自制的中空纤维膜接触器,通过改变烟气流量、水流量和水温对比了聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)和聚丙烯(PP)这3种中空纤维膜对烟气中二氧化硫的吸收性能,并通过电镜和接触角仪表征,对比了3种膜的参数和疏水性。结果表明:在不同烟气流量、水量和水温下,3种膜的吸收性能都表现为PTFE>PP>PVDF,120min时二氧化硫吸收浓度,PTFE最大,是PP的1.68倍,是PVDF的4.62倍;烟气流量的改变对二氧化硫的吸收浓度有显著影响,当烟气流量由60mL/min提高到140mL/min时,120min时PTFE膜二氧化硫的吸收浓度提高了2.14倍;影响膜性能的主要因素为疏水性,PTFE浸泡前后的表面接触角为105°和97°,疏水性远大于PP和PVDF。PTFE中空纤维膜孔径大、孔隙率高,具有极强的疏水性,在烟气脱硫及相关吸收过程中表现出较好的应用前景。  相似文献   

8.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m−1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m−2·h−1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

9.
Fabrication, morphology evaluation , and permeance/selectivity properties of three asymmetric BTDA‐TDI/MDI copolyimide hollow fiber membranes (HFM s ) are reported. The asymmetric HFM s were spun using the dry/wet phase inversion process. The effect of one of the major spinning parameters, the air gap, on the permeance/selectivity properties of the produced HFM was investigated. Scanning e lectron m icroscopy was used to evaluate the morphological characteristics and the macroscopic structure of the developed HFM. The permeance values of He, H2, CH4, CO2, O2, and N2 gases were measured by the variable pressure method at different feed pressures and temperatures and the permselectivity coefficients were calculated. The higher selectivity values were evaluated for the Μ1 membrane and were found to be 49.33, 2.99, 5.13, 5.57 , and 9.61 for H2/CH4, O2/N2, CO2/CH4, CO2/N2 , and H2/CO2 gas mixtures , respectively. The selectivity experiments of H2/CH4, CO2/CH4 , and O2/N2 mixtures were performed at 25 ° C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4490–4499, 2013  相似文献   

10.
A mathematical analysis of the permeate flux decline during microfiltration of fruit juice with hollow fibers under turbulent flow is presented. Impact of complex fluid flow phenomena on mass transfer is analyzed. A comprehensive analytical model for developing concentration boundary layer was formulated from first principles using integral method. Attempts to model the system considering constant boundary layer thickness (film theory) is inaccurate for developing boundary layer. Gel resistance parameter depending on juice characteristics has significant impact on permeate flux. Specific gel layer concentration has insignificant effect on system performance under total recycle mode but important for batch mode. Theoretical results were compared with experiments in clarification of pomegranate juice with poly(ether ether ketone) and polysulfone hollow fiber membranes. The physical parameters of complex mixture were evaluated by optimizing of the flux profiles in total recycle mode of operation and were successfully applied for prediction of batch mode performance. © 2014 American Institute of Chemical Engineers AIChE J 60: 4279–4291, 2014  相似文献   

11.
Sol–gel reaction of tetraethoxysilane (TEOS) with fumed silica–polyacrylonitrile (PAN) membrane was carried out to prepare hybrid gas permeable membranes for oxygen and nitrogen separation. Various amounts of fumed silica microparticles with a few μm diameters were compounded in PAN–dimethylsulfoxide (DMSO) solution. After casting of the viscous compound solution on a flat sheet with 100 μm thickness, DMSO was evacuated under vacuum at 80°C. Then, the silica–PAN composite membranes were treated with TEOS for 1 day at 40°C in methanol. Air permeation was examined and compared in silica–PAN composite membranes with and without TEOS treatment. The latter hybrid membranes showed selective oxygen permeability, which depended on amounts of fumed silica in the membrane. The TEOS hybrid PAN membranes have a high ability of oxygen permselectivity for O2/N2 gas mixture with α(O2/N2) = 13–17, when the silica content was in the range of 13–20 wt %. This is attributed to siloxane network formation in hybrid silica–PAN composite membranes. Favorable siloxane network formation resulted in high oxygen permeability of the hybrid composite membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1752–1759, 2003  相似文献   

12.
The internal and external curved surfaces of polysulfone hollow fiber membranes were characterized by atomic force microscopy (AFM), contact angle measurement (CAM), and scanning electron microscopy (SEM) with the aim of improving the membrane surface properties for blood compatibility. Novel approaches were applied to evaluate a number of properties, including the roughness, pore size, nodule size, and wettability of the surfaces of the hollow fibers. CAM studies were carried out by directly observing the liquid meniscus at the surfaces of hollow fibers. Observation of the meniscus and measurement of the contact angle became possible by using an imaging system developed in our laboratory. AFM and SEM studies were also conducted on the surfaces of the hollow fiber membranes by cutting them at an inclined angle. The effect of the molecular weight of poly(ethylene glycol) (PEG) in the polymer blend on the surface properties of the hollow fibers was studied. Increasing the PEG molecular weight increased the average pore size whereas it decreased the contact angle. The contact angle depended on the microscopic surface morphology, including nodule size and roughness parameters. The theoretical prediction along with the experimental data showed that the measured contact angle would be greater than the value intrinsic to the membrane material because of the formation of composite surface structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4386–4400, 2006  相似文献   

13.
In this study, removal of SO2 from gas stream was carried out by using microporous polyvinylidene fluoride (PVDF) asymmetric hollow fiber membrane modules as gas-liquid contactor. The asymmetric hollow fiber membranes used in this study were prepared polyvinylidene fluoride by a wet phase inversion method. Water was used as an internal coagulant and external coagulation bath for all spinning runs. An aqueous solution containing 0.02 M NaOH was used as the absorbent. This study attempts to assess the influence of PEG additive, absorbent flow rate, SO2 concentration, gas flow rate and gas flow direction on the SO2 removal efficiency and overall mass transfer coefficient. The effect of liquid flow rate on SO2 removal efficiency shows that at very low liquid flow rate, the NaOH available at the membrane surface for reacting with SO2 is limited due to the liquid phase resistance. As liquid flow rate is above the minimum flow rate which overcomes the liquid phase resistance, the SO2 absorption rate is controlled by resistance in the gas phase and the membrane. The SO2 absorption rate with inlet SO2 concentration was sharply increased by using hollow fiber membranes compared to a conventional wetted wall column because the former has higher gas liquid contacting area than the latter. The mass transfer coefficient is independent of pressure. When the gas mixture was fed in the shell side, the removal efficiency of SO2 declined because of channeling problems on the shell side. Also, the addition of PEG in polymer dopes increased SO2 removal efficiency. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
The extraction and stripping of phenol using a solution of tributyl phosphate in kerosene in a hydrophobic polypropylene hollow fiber membrane contactor has been studied. The effect of the aqueous and the organic phase flow rates on the overall mass transfer coefficient for both extraction and stripping steps was investigated. Experimental values of the overall mass transfer coefficient were determined and compared with predicted values from the resistance in series model. Results showed that the overall mass transfer coefficients for extraction were about one order of magnitude greater than those measured during the stripping process. The experimental values were in good agreement with the predicted values for the extraction module. However, the predicted values were slightly overestimated for the stripping module. The individual mass transfer resistances were analyzed and the rate-controlling steps of mass transfer were also identified in both extraction and stripping modules. The major resistance in extraction and stripping was in the aqueous phase and in the membrane phase, respectively.  相似文献   

15.
Hollow fiber MFI zeolite membranes were modified by catalytic cracking deposition of methyldiethoxysilane to enhance their H2/CO2 separation performance and further used in high temperature water gas shift membrane reactor. Steam was used as the sweep gas in the MR for the production of pure H2. Extensive investigations were conducted on MR performance by variations of temperature, feed pressure, sweep steam flow rate, and steam‐to‐CO ratio. CO conversion was obviously enhanced in the MR as compared with conventional packed‐bed reactor (PBR) due to the coupled effects of H2 removal as well as counter‐diffusion of sweep steam. Significant increment in CO conversion for MR vs. PBR was obtained at relatively low temperature and steam‐to‐CO ratio. A high H2 permeate purity of 98.2% could be achieved in the MR swept by steam. Moreover, the MR exhibited an excellent long‐term operating stability for 100 h in despite of the membrane quality. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3459–3469, 2015  相似文献   

16.
We have reported, for the first time, that macrovoids in asymmetric hollow fiber membranes may be completely eliminated at high elongational draws. The evolution of macrovoids vs. elongational draw was observed for both single- and dual-layer hollow fiber membranes. The number of macrovoids and the number of macrovoid layer decrease with an increase in elongational draw ratio, while the dimension of macrovoids varies with increasing elongational draw ratio until the macrovoids are fully eliminated. This study indicates that the elongational stress may play a much more important role than our original thoughts on hollow fiber membrane morphology.  相似文献   

17.
Porous polyvinylidene fluoride (PVDF) and polyetherimide (PEI) hollow fiber membranes incorporating polyethylene glycol (PEG) were prepared via spinning process for CO2 membrane stripping. CO2 loaded diethanolamine solution was used as liquid absorbent while N2 was used as a strip gas. The characterization study of the fibers was carried out in terms of permeation test, contact angle measurement and liquid entry pressure (wetting pressure). Performance study via membrane contactor stripping was carried out at specific operating condition. The experimental results showed that PVDF membrane have high gas permeation, effective surface porosity and contact angle despite having lower liquid entry pressure in comparison with PEI membrane. PVDF-PEG membrane showed the highest stripping flux of 4.0 × 10−2 mol m−2 s−1 at 0.7 ms−1 compared to that of PEI membrane. Although the stripping flux for PEI-PEG membranes was slightly lower than PVDF membrane (e.g. 3.5 × 10−2 mol m−2 s−1 at liquid velocity of 0.85 ms−1), the membrane wetting pressure of PEI membrane is higher than hydrophobic PVDF membrane. Long term performance of both membranes showed severe flux reduction but started to level-off after 30 h of operation.  相似文献   

18.
Literature data show that gas permeability of MFI zeolite membrane varies depending on the geometry of supports. The present work investigates the effects of the surface curvature of substrates on the microstructure and the gas permeation property of supported zeolite membranes. MFI zeolite membranes were grown on porous alumina hollow fibers with different diameters (surface curvature) by the secondary growth method. Single gas permeation and H2/CO2 binary gas separation from 25 to 300 were conducted to study the membrane quality. The zeolite membranes on supports of larger surface curvature have higher permeability and lower selectivity due to the presence of more inter‐crystalline gaps in the zeolite layer formed during the template removal step. The effects of the support surface curvature (and geometry) on zeolite membrane microstructure and gas permeation characteristics are semi‐quantitatively analyzed by a transport model considering both structural change and gas diffusion in micropores. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3419–3428, 2018  相似文献   

19.
The influence of elongation and shear rates induced by the geometry of spinnerets on gas performance of PES hollow fiber membranes has been studied. Different elongation and shear rates were introduced in various spinnerets with flow angles of 60°, 75° and 90° by changing the flow rate of dope solution. The PES hollow fiber membranes were fabricated under the wet-spun condition without extra drawing force and their gas performances were tested by using O2 and N2. The flow profiles of dope solution and the elongation and shear rates at the outermost point of the outlet of spinnerets were simulated by the computational fluid dynamics model. A hypothetic mechanism is assumed to explain the effects of elongation and shear rates on the changes of conformation of polymer chain. While trying to correlate the elongation and shear rates with the gas performance of hollow fibers, we have come to some preliminary conclusions that the elongation rate has more contribution portion in permselectivity than in permeance and the shear rate has more contribution portion in permeance than in permselectivity.  相似文献   

20.
The effect of sulfonation and bromination‐sulfonation on the gas transport properties of polyphenylene oxide has been investigated. These high‐performance modified polymers have been studied in the form of TFC membranes by solution coating on the skin side of polyetherimide hollow fibers. TFC membrane modules prepared from sulfonated‐brominated polyphenylene oxide as the active layer coated on polyetherimide hollow fibers. Stability of the TFC membranes was greatly improved when a wet feed stream was used instead of a dry one. Water vapor in the feed stream most likely prevented the active layer from stress cracking on drying. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 275–282, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号