首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Apolipoprotein A-I (apo A-I) is the most abundant protein in high-density lipoprotein (HDL) particles, and it plays an important role in HDL metabolism. Both apo A-I and HDL cholesterol (HDL-C) levels are inversely associated with risk of cardiovascular disease. Segregation analyses suggest apo A-I levels are under the control of one or more major loci. Since HDL particles are heterogeneous in their composition and size, genetic influence on its subfractions (i.e., HDL2 and HDL3) could vary. A previous report showed evidence of a major locus controlling HDL3-C levels in a subset of the current study population. Because quantitative trait loci involved in complex diseases are likely to have pleiotropic effects on several related traits, it is possible to have a common major gene involved in regulating apo A-I and HDL3-C levels. We performed a bivariate segregation analysis of apo A-I and HDL3-C levels in 1,006 individuals from 137 families ascertained through probands undergoing elective, diagnostic coronary angiography at the Johns Hopkins Hospital. The results showed significant genetic correlation between these two traits, but the hypothesis of a common major gene was rejected. Bivariate segregation analysis favored a model with two genes controlling apo A-I and a third gene independently controlling HDL3-C, and the genetic correlation between these two traits is due to residual additive polygenes. Overall, results from this study suggest that there are distinct genetic mechanisms for apo A-I and HDL3-C levels. Future studies, especially linkage analysis, should consider distinct genetic mechanisms and multiple major gene loci.  相似文献   

3.
We investigated the utility of two approaches for exploiting pleiotropy to search for genes influencing related traits. To do this we first assessed the genetic correlations among a set of five closely related quantitative traits (Q1, Q2, Q3, Q4, Q5). We then used the genetic correlations among these five traits both to remove the common genetic effects of the four remaining traits, thereby identifying the unique genetic contribution to each trait, and to extract a synthetic phenotype which exploits the shared genetic information (pleiotropy) among these five traits. After obtaining these conditional traits, we then searched for evidence of quantitative trait loci (QTLs) (using variance component linkage) influencing the unique residual genetic component for each trait as well as those influencing the expression of the synthetic traits. From this work, we conclude that the removal of the common genetic effects of other traits in a group may be of greater utility when the majority of the pleiotropy initially detected between traits is attributable to the shared additive effects of polygenes, rather than to those of major loci. By contrast, decomposition of the genetic covariance matrix to its principal components is a greater utility when the majority of pleiotropy is attributable to major loci.  相似文献   

4.
Moderate doses of ethanol (1-2 g/kg) markedly increase locomotor activity in some inbred mouse strains, for example, the DBA/2J (D2), but have relatively little effect in other strains, for example, the C57BL/6J (B6). In the present study, we conducted a genome-wide search in a B6D2 F2 intercross (N = 925) for quantitative trait loci (QTLs) associated with the locomotor response. A QTL with a LOD score of 8.4 was detected on Chromosome (Chr) 2; this QTL accounted for 11.4% of the phenotypic variance and approximately 30% of the genetic variance. The QTL on Chr 2 is in the same general region as QTLs previously described for ethanol preference/consumption (Rodriguez et al. Alcohol Clin Exp Res 19, 367, 1995; Melo et al. Nat Genet 13, 147, 1996; Phillips et al. Mamm Genome, in press), acute ethanol withdrawal (Buck et al. J. Neurosci 17, 3946, 1997) and nitrous oxide withdrawal severity (Belknap et al. Behav Genet 23, 213, 1993). A logical candidate gene in the region of interest is the enzyme which synthesizes GABA, glutamic acid decarboxylase 1 (GadI).  相似文献   

5.
From evidence of interpatient variability in normal tissue sensitivity to radiotherapy and from radiation studies using inbred mouse strains, it is hypothesized that individual variation in susceptibility to radiation-induced pulmonary fibrosis is genetically controlled. A genetic model has been developed from the fibrosis-prone C57BL/6J and the fibrosis-resistant C3Hf/Kam mouse strains. Inheritance of the fibrotic phenotype was characterized in F1 and F2 (F1 intercross) generations derived from the parental strains. Genetic mapping was used to determine whether the quantitative trait loci (QTL), which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains, could be implicated in susceptibility to radiation-induced lung fibrosis. Mice were treated with 14 or 16 Gy (60Co) to the whole thorax. The doses were selected to investigate the response at the LD50 and LD100 of C3Hf/Kam mice. The animals were sacrificed 33 weeks after treatment or when moribund. The percentage of lung with fibrosis for each mouse was quantified with image analysis of a histological section of the lung. For both the 14- and 16-Gy data sets, heritability was estimated at 38 +/- 11%, and the number of genetic factors influencing susceptibility to pulmonary fibrosis was estimated to be one or two. Two hundred fifty-five F2 intercross mice were genotyped with markers at the bleomycin loci on chromosomes 11 and 17 (chromosome 17 marker is at the major histocompatibility complex). Genetic linkage was established for the marker on chromosome 17 (P = 3.0 x 10(-6)), which accounts for 6.6% of the F2 phenotypic variance but not for the markers surrounding the QTL on chromosome 11 (P = 0.37). The inheritance data suggested that susceptibility to radiation-induced pulmonary fibrosis is a heritable trait controlled by two genetic loci, and through genomic mapping, a QTL on chromosome 17 was identified as one of the loci.  相似文献   

6.
Allopregnanolone is a neuroactive steroid that, like ethanol (EtOH), has stimulant, anxiolytic, ataxic, and depressant effects. Two experiments tested the hypothesis that sensitivity to the locomotor stimulant effects of these drugs is influenced by a common set of genes. Sensitivity to the locomotor stimulant effects of allopregnanolone was determined in 24 BXD recombinant inbred (RI) strains. Strain means were positively correlated with extant means for EtOH stimulation in 20 of the same strains. Quantitative trait locus (QTL) analysis provisionally identified many loci, including several known to influence sensitivity to EtOH. Sensitivity to allopregnanolone was also measured in FAST and SLOW mice, which were selectively bred for differential locomotor response to EtOH, to determine whether selection has also altered allopregnanolone sensitivity. FAST mice were more sensitive to the stimulant effects of allopregnanolone compared with SLOW mice. These data suggest that sensitivity to the locomotor stimulant effects of these drugs is influenced by common genes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Inbred strains of mice differ in susceptibility to atherogenesis when challenged with a high fat, high cholesterol diet containing 0.5% cholic acid. Studies of recombinant inbred (RI) strains derived from the susceptible strain C57BL/6J (B6) and the resistant strains C3H/HeJ (C3H) and BALB/cJ have revealed an association between fatty streak lesion size and a decrease in high density lipoprotein (HDL) levels on the diet. To better understand the genetic factors contributing to HDL metabolism and atherogenesis in response to the diet, we studied mice derived from an intercross between B6 and C3H using a complete linkage map approach. A total of 185 female progeny were typed for 134 genetic markers spanning the mouse genome, resulting in an average interval of about 10 cM between markers. A locus on distal chromosome 1 containing the apolipoprotein AII gene was linked to HDL-cholesterol levels on both the chow and the atherogenic diets, but this locus did not contribute to the decrease in HDL-cholesterol in response to the diet. At least three distinct genetic loci, on chromosomes 3, 5, and 11, exhibited evidence of linkage to a decrease in HDL-cholesterol after a dietary challenge. Since a bile acid (cholic acid) is required for the diet induced changes in HDL levels and for atherogenesis in these strains, we examined cholesterol-7-alpha hydroxylase (C7AH) expression. Whereas B6 mice exhibited a large decrease in C7AH mRNA levels in response to the diet, C3H showed an increase. Among the intercross mice, multiple loci contributed to the regulation of C7AH mRNA levels in response to the diet, the most notable of which coincided with the loci on chromosomes 3, 5, and 11 controlling HDL levels in response to the diet. None of these loci were linked to the C7AH structural gene which we mapped to proximal chromosome 4. These studies reveal coordinate regulation of C7AH expression and HDL levels, and they indicate that the genetic factors controlling HDL levels are more complex than previously suggested by studies of RI strains. Furthermore, we observed that two of the loci for C7AH expression contributed to differences in gallstone formation between these strains.  相似文献   

8.
C57BL/6J (B6) and DBA/2J (D2) mice have been characterized previously as seizure-resistant and seizure-sensitive, respectively, a distinction based primarily upon a differential response to the convulsant effects of various drugs. In the present study, electroconvulsive shock (ECS) was used to assess maximal electroshock threshold (MET) in B6, D2 and hybrid mice. Results revealed that D2 mice have a significantly lower MET compared to B6 mice. There was also a significant gender effect for B6 and F2 mice with females exhibiting a lower MET compared to males. METs for F1 and F2 intercross mice were intermediate between the two parental strains. The difference in variance between F2 and F1 generation mice indicated that about three-quarters of the total variance is due to genetic influence. Taken together, results of this study suggest that the large difference in MET between B6 and D2 mice is a highly heritable trait which may yield to genetic dissection through use of quantitative trait locus mapping.  相似文献   

9.
Studies were initiated to characterize behaviorally and biochemically C57BL/6J and DBA/2J inbred mice, as well as BXD Recombinant Inbred (RI) strains derived from them. The C57BL/6J, DBA/2J, and 7 BXD RI strains were tested for voluntary alcohol consumption (VAC) by receiving 4 days of forced exposure to a 10% (w/v) solution of alcohol, followed by 3 weeks of free choice between water and 10% alcohol. Measures of VAC included the absolute intake of alcohol (g/kg), as well as alcohol preference. A wide range of VAC was displayed by the various BXD RI strains with a continuous (rather than bimodal) distribution, indicating that there is likely to be additive effects of several genes involved in regulating alcohol-related behaviors. Kinetic characteristics of aldehyde dehydrogenase and catalase in liver and brain of the C57BL/6J, DBA/2J, and BXD strains of mice were determined to test the hypothesis that the genetic regulation of the levels of alcohol-metabolizing enzymes mediate differences in VAC. Aldehyde dehydrogenase activity was determined spectrophotometrically by observing the change in absorption at 340 nm. Catalase activity was determined by measuring oxygen production with a Yellow Springs Biological Oxygen monitor and oxygen electrode. There was a strong negative relationship between VAC and brain catalase activity in the BXD RI and parental strains. These data suggest that RI strains are likely to be useful genetic models in the examination of quantitative trait loci controlling VAC and other responses to alcohol.  相似文献   

10.
Mice of the DBA/2 (D2) strain are highly susceptible to sound-induced seizures at 21 days of age; whereas, mice of the C57BL/6 (B6) strain are resistant to these seizures. Although the difference in susceptibility to audiogenic seizures (ASs) between these two strains is inherited as a multiple-factor trait, an association was observed between susceptibility to ASs and the Ah locus. The Ah locus controls the inducibility of aryl hydrocarbon hydroxylase (AHH) activity by a number of aromatic hydrocarbons. B6 mice carry the Ahb allele and have inducible AHH activity; whereas, D2 mice carry the Ahd allele and have noninducible activity. Inducibility is inherited as a Mendelian dominant trait in crosses between these strains. Mice carrying the Ahb allele are generally less susceptible to ASs sat 21 days of age than are mice carrying the Ahd allele. The combined results from B6 X D2 recombinant inbred strains, congenic strains (where the Ahb allele was placed into the D2 genome and the Ahd allele placed into the B6 genome), the B6D2F1 X D2 backcross generation, and a random survey of various inbred strains, suggest that the association between these two traits is due to genetic linkage, rather than to pleiotrophy or to chance. A major gene that inhibits susceptibility to ASs appears to be closely linked to the Ah locus. This gene has been designated Ias, for inhibition of ASs. A large portion of the genetic variability of AS susceptibility may be due to the segregation of Ias.  相似文献   

11.
Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations, and effects of the individual genes contributing to natural variation in this trait are all unknown. Experimental animal models provide a means to circumvent complicating environmental factors, and the development of dense genetic maps based on molecular markers now provides opportunities to resolve quantitative genetic variation into individual regions of the genome influencing a given trait (quantitative trait loci, QTL). To begin to identify the heritable determinants of BMD, we have examined genetically distinct laboratory mouse strains raised under strict environmental control. Mouse whole-body bone mineral content by dual-energy X-ray absorptiometry (DXA) correlated strongly with skeletal calcium content by ashing, and peak whole-body BMD by DXA in female mice occurred at approximately 80-90 days of age. We therefore determined mean body weight and peak whole body BMD values in 12-week-old female mice from a panel of 24 recombinant inbred (RI) BXD strains, derived from a cross between C57BL/6 and DBA/2 progenitors. The distribution of body weight and BMD values among the strains clearly indicated the presence of strong genetic influences on both of these traits, with an estimated narrow sense heritability of 60% and 35%, respectively. The patterns of differences in body weight and peak whole body BMD in the BXD strains were then integrated with a large database of genetic markers previously defined in the RI BXD strains to generate chromosome map sites for QTL. After correction for redundancy among the significant correlations, QTL analysis of the BXD RI strain series provisionally identified 10 chromosomal sites linked to peak bone mass development in the female. Several of the identified sites map near genes encoding hormones, structural proteins, and cell surface receptors that are intricately involved in skeletal homeostasis. Four QTL for body weight were also identified. One of these loci was also strongly linked to inherited variation in BMD. This finding suggests that body weight and peak BMD may be influenced by linked genes or perhaps by common genes with pleiotropic effects. Our phenotyping in the RI BXD strains has allowed us to map a number of specific genetic loci strongly related to the acquisition of peak BMD. Confirmation of these findings will likely result in the understanding of which genes control skeletal health.  相似文献   

12.
Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F2 intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth.  相似文献   

13.
Tsetse fly-transmitted trypanosomes (Trypanosoma spp.) cause "sleeping sickness' in man and have a serious impact on livestock-based agriculture in large areas of Africa. Multigene control of variation in susceptibility to trypanosomiasis is known to occur in mice, where the C57BI/6 (B6) strain is relatively resistant and the A/J (A) and Balb/c (B) strains are susceptible. Such resistance is also well described among several types of west African cattle. We report here the results of genome-wide scans for genes controlling this trait in the B6 mouse using crosses with two different susceptible strains. Regions on mouse chromosomes 5 and 17 were found to be important in determining resistance in both crosses while an additional region on chromosome 1 showed evidence of involvement in only one cross. We confirmed the size of the effect due to chromosome 17 in F3 intercross populations fixed for alternative parental chromosomes. The three loci are of large effect and account for most of the genetic variation in both F2 populations. We propose that they be designated Tir1, Tir2 and Tir3.  相似文献   

14.
Hb F and F cell values in normal adults vary considerably with a continuous distribution that is substantially skewed to the right implicating a polygenic influence. The high values of Hb F and F cells are transmitted in the condition referred to as heterocellular hereditary persistence fetal hemoglobin which should be regarded as a multifactorial quantitative trait, quite distinct from the classical pancellular hereditary persistence of fetal hemoglobins. Several factors have been shown to influence F cell/Hb F levels in normal adults including age, gender, genetic determinants linked and unlinked to the beta-globin locus on chromosome 11p. Two trans-acting quantitative trait loci for F cell variance have been mapped, one on 6q and the other on Xp, with at least one other implicated. As an initial step towards hunting for the other quantitative trait loci we have carried out a preliminary analysis of F cell variance in 182 pairs of monozygotic and 373 pairs of dizygotic twins. The correlation coefficient of F cell variance in monozygotic twins was 0.89, while that in the dizygotic twins was 0.51. Overwhelming evidence for a strong genetic component in the control of Hb F/F cell levels is provided by a heritability of 0.87. However, the role and extent of contribution from the quantitative trait loci on 6q and Xp are still not known.  相似文献   

15.
Multiple organ dysfunction syndrome (MODS) appears to be the result of a complex program influenced by multiple factors, including environmental, physiological, and immunological conditions. Thus, an uncontrolled inflammatory response following a stochastic event, the initial injury, is believed to be the cause for the development of this syndrome. Several lines of evidence suggest that a genetic component could contribute to the regulation of the inflammatory response, as well, but no direct evidence demonstrates a heritable predisposition to MODS. In the present study, a genetic contribution was demonstrated for the inflammatory response induced by the administration of bacterial lipopolysaccharide (LPS) in different, genetically distinct strains of inbred mice. A survey of five inbred strains showed that mortality following administration of Escherichia coli LPS (20 mg/kg) was highest in C57BL/6J (B6) mice, while A/J mice were the most resistant. Accordingly, B6 and A/J mice were examined further for differences in the inflammatory response elicited by LPS. B6 mice showed higher levels of circulating interleukin-1beta and interleukin-6, as well as higher mRNA levels of hepatic beta-fibrinogen (an acute-phase gene) and metallothionein. Surprisingly, the circulating levels of tumor necrosis factor-alpha were significantly higher in A/J than in B6 mice after LPS administration. Since B6 and A/J mice were bred and raised in identical environments and received the same LPS challenge, the contrasting inflammatory response that was observed is largely attributable to genetic differences between these two strains. These data illustrate that the response to injury could be modulated by the genetic background of the individual. This information may be pertinent for the care of critically ill patients.  相似文献   

16.
Dystrophic cardiac calcinosis, an age-related cardiomyopathy that occurs among certain inbred strains of mice, involves myocardial injury, necrosis, and calcification. Using a complete linkage map approach and quantitative trait locus analysis, we sought to identify genetic loci determining dystrophic cardiac calcinosis in an F2 intercross of resistant C57BL/6J and susceptible C3H/HeJ inbred strains. We identified a single major locus, designated Dyscalc, located on proximal chromosome 7 in a region syntenic with human chromosomes 19q13 and 11p15. The statistical significance of Dyscalc (logarithm of odds score 14.6) was tested by analysis of permuted trait data. Analysis of BxH recombinant inbred strains confirmed the mapping position. The inheritance pattern indicated that this locus influences susceptibility of cells both to enter necrosis and to subsequently undergo calcification.  相似文献   

17.
This study assessed the influence of background genome on expression of genes linked to DNA fingerprint (DFP) bands in chickens. Two experimental lines of White Plymouth Rocks previously selected for high or low 8-wk body weight were crossed to produce two F1 males that served as heads of two sire families. Each of these sires was mated to three hens from an unrelated White Leghorn population to produce progeny in which quantitative traits of 4-, 8-, and 12-wk body weight and shank length at 12 wk were measured. The DFP patterns were produced for all individuals in the study. For the 12 sire-specific DFP bands (common to both F1 sires but not found in the dams), each offspring was classified as having or not having each band. Then, an analysis of variance was conducted for each DFP sire band with sex, hatch, dam family, and presence or absence of the sire band as main effects. Interactions between dam family and presence or absence of sire band were also tested. Of 48 possible analyses of variance (12 sire bands by 4 quantitative traits), 3 resulted in significant effects due to sire band, and 2 indicated significant interactions. Thus, associations of a DFP band and a gene coding for a quantitative trait were present, but, in some cases, the expression of the trait differed, depending on the dam family in which it occurred. These data suggest that associations between DFP bands and quantitative traits may not be consistent in different genetic backgrounds.  相似文献   

18.
Quantitative trait loci affecting conformational type traits were studied in seven large grandsire families of US Holsteins using the granddaughter design and 16 microsatellite markers on 10 chromosomes. The most significant marker effect was marker BM203 (chromosome 27) for dairy form in a single grandsire family. A multivariate analysis for dairy form and milk yield was also conducted, and the result was highly significant, indicating that a segregating quantitative trait locus or loci affecting dairy form and milk yield could exist near BM203 on chromosome 27. Marker BM1258 (chromosome 23) had a significant effect on udder depth. A multivariate analysis on udder depth and somatic cell score was conducted for markers 513 and BM1258, and both markers showed significant effects on these two traits, indicating that one or several quantitative trait loci affecting udder depth and mastitis might exist on chromosome 23. Marker BM4204 (chromosome 9) had a significant effect on foot angle and on the composite index of traits pertaining to feet and legs, indicating that one or several quantitative trait loci affecting traits pertaining to feet and legs might exist on chromosome 9. Selection on these markers could increase genetic progress within these families.  相似文献   

19.
Quantitative trait locus (QTL) mapping efforts in alcohol (ethanol) research are beginning to generate promising data that may ultimately lead to the identification of genes influencing alcohol addiction. Rodents have been extensively utilized to study ethanol's rewarding and aversive effects, and to demonstrate the existence of genetic influences on traits such as free-choice ethanol-consumption, ethanol-conditioned place preference and ethanol-conditioned taste aversion. The purpose of the current investigation was to verify or eliminate from further consideration putative QTLs for free-choice ethanol consumption originally identified in BXD Recombinant Inbred (RI) strains and other informative genetic crosses. B6D2F2 mice were utilized in a verification testing strategy to evaluate the viability of putative ethanol consumption QTLs. When data were combined from BXD RI, B6D2F2 and short-term selected line (STSL) mapping studies, verification was obtained for two QTLs, one on Chromosome (Chr) 9 (proximal-mid) and another on Chr 2 (distal), and suggestive verification was obtained for QTLs on Chrs 2 (proximal), 3, 4, 7, and 15. In addition, the possible genetic association of ethanol consumption with conditioned place preference was evaluated. Genetic correlations were estimated from BXD RI strain means, and QTL maps for these traits were compared to evaluate the possibility of a genetic association. The correlational analysis yielded a trend (r = 0.34, p = 0.09), but no statistically significant results. However, comparisons of QTL mapping results between phenotypes suggested some possible genetic overlap for these traits, both putative measures of ethanol reward. These data suggest that the determinants of these two measures are genetically diverse, but may share some common genetic elements.  相似文献   

20.
The testis-determining autosomal trait (Tda) of the mouse was uncovered when the Y chromosome of the poschiavinus variety of Mus musculus domesticus was introduced into the C57BL/6J laboratory strain background. Testis development is normal in the F1 generation but, in the backcross and subsequent crosses to C57BL/6J females, XY individuals with the poschiavinus Y chromosome expressed bilateral ovaries or various combinations of an ovotestis with a contralateral ovary or testis or bilateral ovotestes and few had testes bilaterally. In other strain backgrounds, such as DBA/2J, XY individuals with the poschiavinus Y chromosome always expressed normal testes bilaterally. The first breeding analysis of this difference in the interaction of strain background with the poschiavinus Y chromosome suggested that the Tda trait was due to a single gene, but attempts to map it failed. We constructed two strains of C57BL/6J and DBA/2J that are consomic for the poschiavinus Y chromosome in order to conduct a segregation analysis of the Tda trait. In the C57BL/6J.Y-POS consomic strain, liability to express incomplete testis development is normally distributed and thresholds in development specify the probability of different classes of ovary, ovotestis, and testis combinations. Testis development is complete in the DBA/2J.Y-POS consomic strain. We demonstrated previously that the Tda trait of C57BL/6J is recessive to that of DBA/2J and the segregating first backcross generation of embryos rejected the single-gene model. We have extended our analysis to a F2 generation of embryos that also rejects a single-gene model. We also report a test mating analysis of the first backcross generation. It was initiated to provide an independent assessment of the single-gene model, but the analysis of the distribution of test mating results suggests that the difference in the Tda trait between C57BL/6J and DBA/2J may be due to a small number of loci, possibly four or five, and that the phenotypic effect between loci may be additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号