首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
郭艳芹  王永伟 《硅酸盐通报》2013,32(8):1510-1514
分别以复合还原剂碳硅、碳铝还原氮化低品位铝土矿(Al2O3含量为68wt%)制备β-SiAlON.利用XRD、SEM和EDS等检测手段和试样的质量变化率,研究了两种复合还原剂制备β-SiAlON的相变过程、β-SiAlON的相对生成量和微观状态.结果表明:低品位的矾土矿利用复合还原剂可以制造出优良廉价的β-SiAlON材料;碳硅试样的β-SiAlON为O'-SiAlON和Al2O3反应生成;碳铝试样的β-SiAlON为AlN、Si3N4和Al2O3反应生成以及碳直接还原氮化莫来石生成;基本结束的反应温度为1500℃,生成的β-SiAlON为柱状、z值为3左右;复合还原剂碳硅还原氮化制备β-SiAlON相对含量高,结晶形貌好,制备成本低.  相似文献   

2.
本文介绍β′-SiAlON的结构、基本性能及应用领域,阐述了合成β′-SiAlON的原材料和各种合成方法,重点介绍了利用天然原料合成β′-SiAlON的还原剂外加法和还原剂内加法即有机插层法。详细阐述了各工艺条件(反应原料的组成、反应温度、反应时间、反应气氛、流速及反应物颗粒尺寸、添加剂等)对合成β′-SiAlON反应结果的影响。同时本文指出目前该研究可能存在的问题及解决的途径。  相似文献   

3.
叶蜡石在碳热还原氮化过程中的相变   总被引:4,自引:1,他引:4  
研究了叶蜡石在不同温度下碳热还原氮化合成SiAlON过程中的相变。SEM、XRD以及EDS分析结果表明 :130 0℃开始氮化形成O’ SiAlON ,14 0 0℃时O’ SiAlON的XRD峰已经很明显 ,14 5 0℃时O’ SiAlON大量生成并在 15 0 0℃时达到最大值 ;14 5 0℃时开始形成β SiAlON(z=2 )和少量SiC ;15 5 0℃时 ,β SiAlON成为主要的氮化产物 ,与少量的O’ SiAlON并存 ;莫来石和方石英直到 15 0 0℃仍然存在 ,15 5 0℃消失。  相似文献   

4.
系统研究了苏州高岭土碳热还原氮化合成SiAlON过程在不同温度下的相变。对试样的XRD、SEM以及EDXA分析结果表明 ,1 30 0℃之前 ,试样中没有氮化物生成 ,物相为莫来石、石英和方石英 ;1 30 0℃时 ,高岭土开始发生氮化反应 ,生成过渡型SiAlON和β SiAlON。此时 ,石英和方石英相基本消失 ;1 4 0 0℃时 ,过渡型SiAlON、β SiAlON和X SiAlON三相共存 ,β SiAlON有所增多并有少量刚玉相生成 ;从 1 4 50℃到 1 550℃ ,Z值为 3的β SiAlON成为惟一的氮化产物 ,与少量SiC和刚玉相并存。莫来石在 1 50 0℃时完全消失  相似文献   

5.
粉煤灰合成SiAlON粉体研究   总被引:2,自引:2,他引:2  
鲁晓勇  张德  蔡水洲 《耐火材料》2005,39(4):259-262
以粉煤灰、石墨粉、氧化铝、二氧化硅等为主要原料,采用碳热还原氮化法合成了SiAlON粉体。研究了Fe2O3含量不同的粉煤灰,即未除铁粉煤灰(Fe2O3的质量分数为4.16%)、酸洗除铁后的粉煤灰(Fe2O3的质量分数几乎为0)和磁选除铁后的粉煤灰(Fe2O3的质量分数为3.46%),配料的m(SiO2)∶m(Al2O3)(分别为1.176、1.55和2.35),碳加入量(分别为理论加入量、过量10%、过量100%和过量150%)以及反应温度(分别为1350℃、1400℃、1420℃、1430℃和1460℃)对合成产物相组成的影响。研究表明:以经过磁选除铁后的粉煤灰(Fe2O3的质量分数为3.46%)为原料,当配料的m(SiO2)∶m(Al2O3)为1.4,碳粉加入量为理论值的2倍(即过量100%)时,于1420℃保温20h合成的产物的主要物相为βSiAlON。  相似文献   

6.
天然原料碳热还原氮化合成β''''-SiAlON的研究进展   总被引:2,自引:0,他引:2  
本文介绍β'-SiAlON的结构、基本性能及应用领域,阐述了合成β'-SiAlON的原材料和各种合成方法,重点介绍了利用天然原料合成β'-SiAlON的还原剂外加法和还原剂内加法即有机插层法.详细阐述了各工艺条件(反应原料的组成、反应温度、反应时间、反应气氛、流速及反应物颗粒尺寸、添加剂等)对合成β'-SiAlON反应结果的影响.同时本文指出目前该研究可能存在的问题及解决的途径.  相似文献   

7.
选用低品位的铝土矿(Al2O3含量为68wt%)利用复合还原剂碳/硅、碳/铝、铝/硅还原氮化合成β-Sialon.计算试样烧成后的质量变化率,利用检测仪器XRD、SEM、EDS,化学分析法,研究了三种复合还原剂还原氮化低品位铝土矿合成β-Sialon的反应过程、显微结构和相对含量.结果表明:利用三种复合还原剂还原氮化合成β-Sialon材料的机理、生成β-Sialon的相对含量、结晶形貌、生产成本均不同;反应基本结束的温度均为1500℃,生成z值为3左右β-Sialon;工业生产中利用碳/硅复合还原氮化低品位铝土矿合成β-Sialon材料较理想.  相似文献   

8.
彭犇  岳昌盛  陆璇  郭敏  张梅 《硅酸盐通报》2010,29(1):167-170
以煤矸石和碳黑为主要原料,在1800 K下碳热还原氮化合成了纯度较高、含有大量晶须的β-SiAlON材料.FESEM照片表明β-SiAlON晶须多为细长柱状,直径120~220 nm,长度1.5~5 μm,晶须生长机制由VLS(vapor-liquid-solid)机制和VS(vapor-solid)机制组成.  相似文献   

9.
碳热还原氮化法制备SiAlON陶瓷材料   总被引:3,自引:0,他引:3  
碳热还原氮化工艺是近年来制备低成本高性能SiAION陶瓷材料的一种实用方法.具有产业化生产潜力。本文对碳热还原氮化法制备SiAION的进展进行了综述,归纳分析了不同条件对生成物性能的影响,对今后的研究进行了展望。  相似文献   

10.
介绍了β′SiAlON的合成方法及其合成原料,并将合成方法分成还原剂外加法和内加法(即有机插层法)两类加以介绍。将各动力学参数(原料组成、添加剂及杂质、反应温度及时间、反应气氛、反应物颗粒尺寸等)对天然原料碳热还原氮化合成β′SiAlON的反应结果的影响进行了详细阐述,叙述并讨论了对该合成反应的不同反应机理及动力学模型的研究进展,并针对该领域的研究现状提出了一些展望。  相似文献   

11.
采用质量分数80%的粘土(广西高岭土或吉林球粘土)和20%的炭黑为原料,以白云石、CaO、TiO2为烧结助剂,经碳热还原氮化反应制备了β’-SiAlON材料。研究了烧成温度、保温时间、烧结助剂、成型压力和粘土种类等因素对制备β’-SiAlON材料的影响。结果表明,烧成温度以1450℃为宜,延长保温时间有利于β’-SiAlON相的形成;烧结助剂的催化效果以TiO2最好,白云石次之;随着成型压力的增大,合成试样中β’-SiAlON相减少;粘土原料的化学组成(m(SiO2)/m(Al2O3))对β’-SiAlON的Z值产生影响,m(SiO2)/m(Al2O3)减小时,Z值趋于增大。  相似文献   

12.
碳热还原法合成Si3N4的研究   总被引:4,自引:0,他引:4  
丘泰  徐洁 《硅酸盐通报》1995,14(5):14-19
研究了碳热还原法合成S3N4粉末中原料配比、N2流量,反应压力、反应莳晶种等因素对氮化的影响,获得了较佳的工艺参数,研制出氮含量大于37%,平均粒径小于1.5μm的α-Si3N4粉末。  相似文献   

13.
对电热还原赤泥与低品位铝土矿制取铝硅合金进行了研究。结果表明,配以低品位铝土矿的赤泥熔炼铝硅合金切实可行,熔炼出的铝含量为50%,硅35%和一些杂质。其中的杂质主要是铁和一些金属氧化物。最佳熔炼温度为2 000~2 200℃,合金中的Al、Si含量均随还原温度的升高而增大;相同还原温度下的Si回收率大于Al的回收率;使用含冰晶石和氯化钠混合物的精炼剂可有效去除合金中的杂质。  相似文献   

14.
铝热还原氮化合成矾土基β-SiAlON的反应过程   总被引:2,自引:5,他引:2  
侯新梅  钟香崇 《耐火材料》2004,38(4):230-233
采用差热分析、热重分析和XRD分析等测试手段研究了铝热还原氮化法合成矾土基SiAlON的反应过程。结果表明 ,合成过程的反应可分为以下 5个阶段 :1)AlN的形成 (6 0 0~ 80 0℃ ) ;2 )SiO2 被还原并形成Si3N4 (90 0~ 12 0 0℃ ) ;3) β SiAlON开始形成 (130 0~135 0℃ ) ;4 )形成Si2 N2 O和过渡态SiAlON(14 0 0℃左右 ) ;5 )最终形成z=3的β SiAlON(14 5 0~ 15 0 0℃ )  相似文献   

15.
工艺条件对粘土碳热还原氮化合成β'-Sialon粉体的影响   总被引:3,自引:0,他引:3  
利用失重和XRD分析研究了试样组成、合成温度、保温时间和N2分压等工艺条件对粘土碳热还原氮化合成β'-Sialon粉体的影响.结果表明加入超过化学计量10%的碳,适当提高合成温度和延长保温时间,适当减小氮气分压,都有利于β'-Sialon的形成.轻烧粘土对氮化反应影响不大;β'-Sialon形成过程的分析表明碳热还原氮化反应主要受中间产物CO和SiO的控制.  相似文献   

16.
碳热还原—氮化法合成—β′—sialon的研究   总被引:2,自引:0,他引:2  
刘贵伟 《陶瓷学报》1998,19(4):217-220
本文对β′-sialon的碳热还原———氮化合成进行了详细研究。结果表明:影响β′-sialon粉料合成的因素依次为合成温度、添加剂用量、氮气流量、保温时间。对合成的粉料进行含氮量和XRD检测。给出了本实验条件下合成β′-sialon的最佳工艺参数:合成温度1450℃,添加剂(Si3N4)用量5%,氮气流量为1.0L/min,保温时间为6h。同时探讨了反应过程和Z值的测量与计算方法。  相似文献   

17.
在热力学分析的基础上,以用后Al2O3-SiC-C铁沟料、煤矸石和活性炭为主要原料,采用碳热还原氮化法合成了β-SiAlON。详细讨论了合成温度(1 723和1 823 K)、活性炭加入量(理论需碳量、过量15%、过量30%和过量45%)、Si与Al元素摩尔比(分别为3:3,3.5:2.5和4:2)和煤矸石种类(低碳煤矸石和高碳煤矸石)对合成β-SiAlON的影响,并采用XRD、SEM和EDS等对合成产物进行分析。结果表明:(1)当合成温度由1 723 K增加到1 823 K时,合成后试样中β-SiAlON相含量增加,O’-SiAlON和α-Al2O3的含量降低;(2)加入过量的活性炭有利于合成后试样中β-SiAlON相含量的增加;(3)随着Si、Al元素摩尔比的增大,合成后试样中β-SiAlON相含量增多;(4)采用低碳煤矸石的试样中β-SiAlON相含量高于采用高碳煤矸石的,其原因是配料时前者中配入的活性炭更多,而活性炭的活性较高,更有利于促进碳热还原氮化反应的进行。  相似文献   

18.
杨志红  张德  周胜昌 《陶瓷》2004,(5):27-28,31
将含石墨、刚玉、硅微粉或方镁石粉等的复合粉体在万能材料试验机上以150MPa的压力压制成圆柱形试样,在还原气氛于1420℃、1500℃和1600℃保温4h,通过碳热还原氮化法在试样中合成阿隆和赛隆。XRD分析证明,在1400%时出现少量阿隆和AIN多型体赛隆,温度继续升高至1600℃时合成量增加,但赛隆的合成速度远低于阿隆的合成速度,且含阿隆的试样致密性优于含赛隆的试样。  相似文献   

19.
研究了低品位铝土矿生产硫酸铝及提高产率和产品质量的方法。考察了焙烧温度、焙烧时间、浸取温度、浸取时间、硫酸及活化剂的加入对产率的影响。提出最佳工艺条件,为工业生产提供了依据。  相似文献   

20.
γ-AlON透明陶瓷具有硬度大、化学稳定性好以及光学透过率高等优点,在国防与商业领域具有广阔的应用前景.高纯超细、粒径分布均匀、几乎无团聚的单相γ-AlON粉体是制备高透明γ-AlON陶瓷的关键.本文首先对Al2 O3-AlN相图及γ-AlON的热力学计算结果进行了简要介绍,然后综述了高温固相反应、铝热还原氮化、碳热还...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号