首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the improvement of bi-directional micropump velocity by deposition of a hydrophobic nanocomposite monolayer. A polymer base nanocomposite coating consisting of a homogeneous mixture of silicon nanoparticles in polydimethylsiloxane (PDMS) is used to improve the hydrophobicity of the micropump surfaces. For hydrophobic nature of PDMS and the monolayer coating with nanoscale surface roughness, the hydrophilic surface of a biased AC electroosmotic micropump will transform to a hydrophobic surface. In our previous research the applied AC voltage, frequency, channel dimension, and electrode width were optimized (Islam and Reyna, Electrophoresis 33(7), 2012). Based on the prior results obtained for the biased AC electroosmotic micropump, the pumping velocity was 300 micron/s in 100-μm channel thickness for applied voltage of 4.4 V at 1 kHz frequency. Here in this work, improvement of the micropump velocity is investigated through a surface modification process. The highest velocity of 450 micron/s is observed by modifying the surface characteristics. This paper will also discuss the synthesis process and characteristics of the polymer base nanocomposite monolayer. In addition to hydrophobicity improvement, adding a thin nanocomposite monolayer will physically separate the electrodes from the pumping liquid, thus eliminating their reaction, which is usually observed due to the application of voltage. As a result, higher voltages can be applied to the electrodes and higher pumping rates are achievable.  相似文献   

2.
AC electro-osmotic (ACEO) pumping is experimentally demonstrated on a symmetric gold electrode array. Using asymmetric connection of electrodes to the applied AC voltage, spatial asymmetry along the array is created, which produces unidirectional flow of electrolyte. An aqueous solution of 100 μM KCl is selected as the pumping fluid. The liquid velocity obtained as a function of voltage and frequency is compared to that generated using travelling-wave electroosmosis (TWEO) with the same electrode array. The expected velocities from the linear electrokinetic models of ACEO and TWEO are computed numerically. The comparison shows that TWEO generates greater velocity amplitudes and the streamlines are smoother than those generated by ACEO.  相似文献   

3.
设计了一个双并联电渗驱动泵,它由三条并联的主通道和叉指型电极两部分组成,其中每条主通道由若干个与电渗流形成方向成45°角的沟槽并联构成。通过选用ITO载玻片作为芯片基底并获得其最佳工艺参数,制作了带电极的PDMS-玻璃微流控芯片。最后对制作的电渗微泵进行测试,通过记录一段时间内单个主通道泵输送液体的体积,得出单个主通道的流速与微泵总流速。实验发现在5V内,微泵泵送液体的能力随着电压的增加而增大,微泵流速可以达到正常人体眼球房水生成速度,该结构在未来房水引流器件制作方面具有潜在的应用价值。  相似文献   

4.
This paper proposes the patterned AC electroosmotic flows (AC-EOF) by simply grouping discrete electrodes together to form various electrode configurations for generation of in-plane microvortices with clockwise/counter-clockwise rotation, and pumping flow in a microchannel. The rotational direction of in-plane microvortices and pumping flow direction can be controlled using the same electrode pattern by simple switching of the voltages on the electrodes. Microparticle image velocimetry (μPIV) was used to characterize the flow fields of the generated in-plane microvortices and pumping flow. The rotational strength of microvortices and flow rates of pumping flows were found to increase with the increase of the applied voltages, and an optimal value was achieved at an appropriately applied frequency. Moreover, the dependency of the applied voltages, frequencies, and the heights of the measured planes on the rotational strength of in-plane microvortices between the interdigitated and discrete electrode configurations were examined. The discrepancy in electrode geometry results in a small performance reduction, whereas it can be compensated for the ability of switching the rotational direction of in-plane microvortices using the same device. The configurable in-plane microvortices and pumping flow in microchannels provide the potential for micromixing applications and for the integration into a lab-on-a-chip system.  相似文献   

5.
The three-dimensional (3D) flow due to AC electroosmotic (ACEO) forcing on an array of interdigitated symmetric electrodes in micro-channels is experimentally analyzed using astigmatism micro-particle tracking velocimetry (astigmatism μ-PTV). Upon application of the AC electric field with a frequency of 1,000 Hz and a voltage of 2 Volts peak–peak, the obtained 3D particle trajectories exhibit a vortical structure of ACEO flow above the electrodes. Two alternating time delays (0.03 and 0.37 s) were used to measure the flow field with a wide range of velocities, including error analysis. Presence and properties of the vortical flow were quantified. The steady nature and the quasi-2D character of the vortices can combine the results from a series of measurements into one dense data set. This facilitates accurate evaluation of the velocity field by data-processing methods. The primary circulation of the vortices due to ACEO forcing is given in terms of the spanwise component of vorticity. The outline of the vortex boundary is determined via the eigenvalues of the strain-rate tensor. Overall, astigmatism μ-PTV is proven to be a reliable tool for quantitative analysis of ACEO flow.  相似文献   

6.
 This paper reports a research effort to design, microfabricate and test a DC type magnetohydrodynamic (MHD) micropump using LIGA method (Menz et al., 1991). The micropump is driven using the Lorentz force and can be used to deliver electrically conductive fluids. In operation, a DC voltage is supplied across the electrodes to generate the distributed body force on the fluid in the pumping chamber, and therefore a constant pressure difference along the pumping chamber. The external magnetic field was supplied using permanent magnets. The major advantage of a MHD-based micropump is that it does not contain any moving parts. It may have potential applications in medicine delivery, biological and biomedical studies. The test of the DC prototype micropump shows that bubble generation mechanism affect the performance significantly and an AC driving mechanism may be used to improve the performance.  相似文献   

7.
电磁流量计极间信号干扰的建模与分析   总被引:1,自引:0,他引:1  
周真  王强  秦勇 《测控技术》2012,31(1):132-134
电磁流量计极间信号不仅包含流量信号,而且掺杂有各项干扰信号。流量信号和干扰信号都是由相对独立的信号源产生,所以它们之间以物理叠加的关系构成了电磁流量计极间信号。因此将上述信号构建数学模型,经解析:直流分量代表管内水流速度信号,即流量信号。交流分量呈现为干扰信号特征。采用信号分离手段,较容易得到流量信号并去除干扰信号。实验数据表明通过建模分析可以有效地去除电磁流量计极间干扰信号,此方法设计的电磁流量计误差范围比传统的正弦波励磁电磁流量计误差范围小±0.05%。  相似文献   

8.
使用交流电化学方法定向制备了预制微电极之间的电连接。通过调节交流电压与偏置直流电压幅值可以控制电连接的生长方向。如果施加的交流电压幅值高于生成电连接的电压阈值,并且该值恒定时,频率越小,浓度越大,电连接晶体越粗壮;而当电解液浓度与频率恒定时,电压幅值变化对形貌影响较小。有限元仿真模拟进一步说明:当施加的交流电压高于阈值时,电极处于交流电渗流上游。电极扩散层厚度增加将诱导电极之间电连接晶体的生长。在交流电压上叠加直流偏置电压时,电连接晶体从偏置电压相对较负的一端向另一端生长。伏安特性测试结果表明:该连接具有优异的接触特性。  相似文献   

9.
电渗驱动微泵设计初探   总被引:1,自引:0,他引:1  
电渗驱动微泵是一种新型的微泵,具有输出压强高、流量可调范围宽、结构简单、无活动部件等特点,易与微通道热沉集成,构成微通道冷却系统,可用于集成电路的热管理.本文介绍了电渗驱动微泵的数学模型,利用PB方程来描述电渗流中电势和离子分布,讨论了背压与流速的关系,槽道宽度、工作液体温度、外加电压等参数对电渗泵性能的影响.  相似文献   

10.
The classic model by Ramos et al. for numerical simulation of alternating current electrothermal (ACET) flow is a decoupled model based on an electrothermal force derived using a linear perturbation method, which is not appropriate for the applications, where Joule heating is large and the effect of temperature rise on material properties cannot be neglected. An electrically–thermally–hydrodynamically coupled (fully coupled) ACET flow model considering variable electrical and thermophysical properties of the fluids with temperature was developed. The model solves AC electrical equations and is based on a more general electrostatic force expression. Comparisons with the classic decoupled model were conducted through the numerical simulations of an ACET micropump with asymmetric electrode pairs. It was found that when temperature rise is small the fully coupled model has the same results with the classic model, and the difference between the two models becomes larger and larger with the increasing temperature. The classic decoupled model underestimates the maximum temperature rise and pumping velocity, since it cannot consider the increase in electrical conductivity and the decrease in viscosity with temperature. The critical frequencies where the lowest velocity occurs or pumping direction reverses are shifted to higher frequencies with the increasing voltage according to the fully coupled model, while are kept unchanged according to the classic model.  相似文献   

11.
Experimental velocity measurements are conducted in an AC electrokinetic DNA concentrator. The DNA concentrator is based upon Wong et al. (Transducers 2003, Boston, pp 20–23, 2003a; Anal Chem 76(23):6908–6914, 2004)and consists of two concentric electrodes that generate AC electroosmotic flow to stir the fluid, and dielectrophoretic and electrophoretic force fields that trap DNA near the centre of the inside electrode. A two-colour micro-PIV technique is used to measure the fluid velocity without a priori knowledge of the electric field in the device or the electrical properties of the particles. The device is also simulated computationally. The results indicate that the numerical simulations agree with experimental data in predicting the velocity field structure, except that the velocity scale is an order of magnitude higher for the simulations. Simulation of the dielectrophoretic forces allows the motion of the DNA within the device to be studied. It is suggested that the simulations can be used to study the phenomena occurring in the device, but that experimental data is required to determine the practical conditions under which these phenomena occur.  相似文献   

12.
Dynamic aspects of electroosmotic flow   总被引:2,自引:0,他引:2  
This article presents an analysis of the frequency and time dependent electroosmotic flow in open-end and closed-end microchannels of arbitrary cross-section shape. In the numerical model, the modified Navier–Stokes equation governing the AC electroosmotic flow is solved using the control volume method. The iterative approach is used to determine the induced backpressure gradient. The potential distribution of the EDL in the channel is obtained by solving the non-linear 2D Poisson–Blotzmann equation. The comparison between the control volume formulation and the Green’s function method for the case of a rectangular microchannel shows a good agreement. The time evolution of the electroosmotic flow and the effect of a frequency-dependent AC electric field on the oscillating electroosmotic flow are also examined. The effect of the induced backpressure gradient with the frequency of the applied electric field is also shown.  相似文献   

13.
This paper reports the enhancement of the mixing effect via the transverse electroosmotic flow by using a 3D microelectrode system, which is structured by aligning two layers of electrodes face-to-face placed on both the top and bottom sides of the channel. The fluid was stretched and folded due to the transverse electroosmotic flow generated by applying an electric field on the electrodes. In this paper, two type of electrode designs (a parallel type electrode design and squarewave type electrode design) were chosen and six design patterns with different combinations of these two types of electrode designs were investigated by using the numerical method. The mixing effect at different design patterns was investigated via comparing the flow structure, mixing mechanism, Poincaré map, and the index of mixing performance. An optimum pattern was obtained when squarewave type electrodes were placed on both top and bottom of the channel. A minimum mixing length of 1.6 mm is required for the optimum pattern when the flow velocity is 1.5 mm/s, and the amplitude of the applied electric potential is 1.2 Volts. The effects of the geometric size and flow rate for the optimum pattern are discussed.  相似文献   

14.
Point-of-care (POC) diagnostics is one of the most important applications for microfluidic research. However, the development of microfluidic POC devices needs to overcome great obstacles to reach market. One challenge is to find a chip-scale pumping strategy that is of low cost, small size, and light weight. Because of their simple implementation, electrokinetic techniques have been extensively investigated as a promising candidate for realizing disposable pumps, with the majority of research effort focusing on direct current and alternating current (AC) electroosmosis. As POC applications often need to handle conductive biofluids with medium to high salt content, AC electrothermal (ACET) effect has been investigated recently for pumping of biofluids, albeit with less than desirable pumping performance. In order to achieve effective on-chip ACET micropumps, this paper presents one of the first efforts in optimizing ACET micropump design utilizing planar interdigitated electrodes. The effects of electrode dimensions on pumping rate were numerically studied using COMSOL Multiphysics and MATLAB, and an optimal ratio of electrode geometry was found for various pumping scenarios. The optimal geometry ratio was tested to be valid over a wide range of electrode characteristic lengths, AC signals, and fluid ionic strengths. Experimental validation of the simulation results was also conducted, and higher flow velocities over prior reports were consistently demonstrated by optimized electrode arrays.  相似文献   

15.
This paper presented an experimental validation of a numerical study on the vortical structures in AC electro-osmotic (ACEO) flows. First, the 3D velocity field of ACEO vortices above the symmetric electrodes was experimentally investigated using astigmatism microparticle tracking velocimetry. The experimentally obtained velocities were used to validate an extended nonlinear Gouy–Chapman–Stern model accounting for the surface conduction effect. A qualitative agreement between the simulations and experiments was found for the velocity field when changing AC voltage (from 0.5 to 2 V) and the frequency (from 50 to 3,000 Hz). However, the predicted magnitude of the velocity profiles was much higher than the experimentally obtained ones, except in some cases at low frequency. For frequencies higher than 200 Hz, a correction factor was introduced to make the numerical results quantitatively comparable to the experimental ones. In addition, the primary circulation, given in terms of the spanwise component of vorticity, was numerically and experimentally analyzed as function of frequency and amplitude of the AC voltage. The outline of the vortex boundary was determined via the eigenvalues of the strain-rate tensor estimated from the velocity field. It revealed that the experimental circulation was frequency dependent, tending to zero at both low and high frequency and the maximum changing from around 600 Hz for 1 V to 300 Hz for 2 V. The variation in the predicted vortex circulation as function of frequency and voltage, after using the above correction factor, was in good correspondence with the experiments. These results yield first insights into the characteristics of 3D ACEO flows and the ability of current numerical models to adequately describe them.  相似文献   

16.
The ability to achieve fast fluid flow yet maintain a relatively low temperature rise is important for AC electrothermal (ACET) micropumping, especially in applications such as bioMEMS and lab-on-a-chip systems. In this paper, we propose a two-phase ACET fluidic micropump using a coplanar asymmetric electrode array. The proposed structure applies a two-phase AC voltage, i.e., voltage of phase 0°/180°, to the narrow electrodes while the wide electrodes are at ground potential. Numerical simulation demonstrates that this simple coplanar electrode configuration can achieve at least 25% faster fluid flow rates than using a single AC signal. By selecting certain design parameters, a two-phase ACET structure can achieve up to 50% faster fluid flow rates than a corresponding single-phase structure. The simple two-phase AC signal sources are easily produced by using inverter buffers, which is a considerable improvement compared to the multi-phase AC signals required by other electrokinetic micropumping methods, such as traveling wave structures.  相似文献   

17.
In this work, an electroosmotic flow micropump is proposed and investigated using theoretical analysis and numerical simulations. The micropump comprises an array of interdigitated electrodes on the top and the bottom surfaces of a rectangular microchannel. Theoretical analysis and extensive numerical simulations are performed to predict the pressure-flow characteristics of the micropump. The results of the model and simulations are compared which show good agreement with each other. The effects of various geometrical parameters including spacing between a pair of electrodes, gap between adjacent pairs of electrodes, width and height of the electrodes, and width of the microchannel and operating parameter including applied voltage on the performance of the micropump in terms of flow and pressure capacity is investigated.  相似文献   

18.
Bubble-free electrokinetic pumping   总被引:1,自引:0,他引:1  
Bubble-free electroosmotic flow (fr-EOF) of aqueous electrolytes in microfluidic channels with integrated electrodes is demonstrated. Undesirable electrolytic bubble formation is avoided by applying a periodic, zero net charge current to generate a nonzero average potential between the electrodes. Electrokinetic pressure generated in this active segment of the microchannel drives now upstream and downstream where electric field is absent. Flow rates commensurate with theoretical predictions for EOF driven by a dc voltage equivalent to the average net potential have been measured. By significantly reducing driving potentials and liquid exposure time to strong electric fields, fr-EOF opens the way for fully integrated, versatile micro total analysis systems (/spl mu/TAS).  相似文献   

19.
Low-voltage electroosmotic pumping using porous anodic alumina membranes   总被引:2,自引:2,他引:0  
This study demonstrated electroosmotic pumping with high flow rate per unit area at a rather low applied voltage by using alumina nano-porous membrane. The platinum mesh electrode is perpendicular to, and has direct contact with the nano-channel inlet for proving uniform electric field and for reducing the electric voltage drop in the reservoir. The measured flow rate versus electrolyte (KCl) concentration reveals two distinct characteristics. First, the flow rate is usually high at low concentrations (10−5 to 10−7 M) in which a maximum value occurs. Second, a remarkable drop of flow rate is seen when the concentration surpasses 10−4 M. The maximum flow rate achieved from this study is 0.09 mL/min V cm2 and the energy transfer efficiency is 0.43% at an operation voltage of 20 V. The mesh electrodes with 33 wire spacing are capable of providing an uniform electric field, the nano-porous membrane with a low electrolyte concentration provides the environment for strong overlapping of electric double layer, in association with the thin alumina membrane, leading to a high flow rate at a rather low applied voltage (20–80 V). The flow rate is comparable to the existing results whereas the corresponding operation voltage of this study is about one to two orders lower than most of the existing results.  相似文献   

20.
介绍了一种电渗微泵的结构及其驱动原理,研究了其对不同生理溶液的渗透特性。模拟眼内房水引流装置,利用电渗微泵对三种生理溶液进行测试,通过改变电压,测试定量体积的溶液,记录时间得出相应流速,用Origin Proporable软件对数据拟合得出压电流速曲线,结果表明电压对液体流动速度的影响成正比。人眼可承受最大5 V电压,此时该测试微泵传输液体流量每分钟可达到十几微升,通过分析5 V以内微泵对溶液的渗透性能,结合正常眼内房水引流速度,确定合理的驱动电压设计值,这将对未来制作实际可用的房水引流装置和器件产生指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号