首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
通过加速旋转坩埚技术和Bi2O3/B2O3助溶剂生长技术研制新型磁光复合稀土铁石榴石单晶ReYbBiIG(Re:Tb3+、Ho3+、Y3+。从理论上解释了将两种具有相反符号法拉第温度和波长系数的掺铋稀土铁石榴石复合可以显著优化磁光性能,并成功制得具有大磁光优值、低饱和磁化强度、低近红外吸收、极小法拉第温度和波长系数的系列优质磁光单晶(如:Ho0.85Yb1.12Bi1.03Fe5O12和Tb2.06Yb0.46Bi0.48Fe5O12等)。研究表明,以新型磁光复合稀土铁石榴石单晶ReYbBiIG作为法拉第转子材料制得的新型光隔离器更适用于WDM光纤通讯系统对宽波段和温度稳定性的要求。  相似文献   

2.
We present the results of an experimental study of nonlinear magneto-optical rotation in a buffer-gas-free uncoated Cs cell on hyperfine transitions F(g) = 3 --> F(e) = 2, 3, 4 of the D(2) line at high laser irradiance (up to 40 mW/cm(2)). The measurements were done in a forward scattering configuration, with simultaneous linear scanning of laser frequency and magnetic field at different temporal rates. The latter revealed, in a single measurement, the dependences of maximum nonlinear Faraday signal and the corresponding B-field on the laser frequency within the Doppler profile.  相似文献   

3.
Technical Physics Letters - The spectral, temperature, and field dependences of the Faraday effect in the IR spectral range have been studied in single crystals of the CoFe2O4 ferrimagnetic spinel....  相似文献   

4.
杨喜云  于培峰 《材料导报》2012,26(6):73-75,84
以粒径为700nm的球形Fe3O4为晶种,将晶种加入到含有FeSO4.7H2O、FeCl3.6H2O与尿素的混合溶液中,在磁场诱导下制备链状Fe3O4。研究了磁场强度、晶种添加量、分散剂聚乙烯吡咯烷酮(PVP)质量浓度以及反应时间对产品形貌的影响。研究结果表明,随着磁场强度的增大、晶种量的增加,链状粒子数目显著增多;适量的PVP能使链状粒子分散平行排列。合成链状Fe3O4粒子的最佳工艺条件为磁场强度0.35T,晶种用量10%,PVP质量浓度7.5g/L,反应18h。磁性能测试表明,该链状Fe3O4粒子具有亚铁磁性,磁饱和强度为72.3emu/g,矫顽力为381Oe。  相似文献   

5.
In ferrimagnets, under a dc magnetic field, magnon-phonon coupling can result in such effects as acoustic birefringence and Faraday rotation. From our work on acoustic Faraday rotation in nonellipsoidal samples of YIG, we found three regions of rotation. The low field region has an internal magnetic field insufficient for effective phonon-magnon conversion. Fitting the rotation observed to the theory we find values for the second magnetoelastic constant and the average demagnetizing field. Between the low and middle field regions a decrease in the amplitude of the transmitted elastic wave was observed and attributed to spin-wave losses. The middle field region was characterized by conversion of elastic energy into spin waves. Regions of inefficient conversion were observed. Faraday rotation was again observed in the high field region.  相似文献   

6.
Thin film iron oxides prepared by a new pyrolisis technique are studied by means of CEM spectroscopy and Faraday rotation measurements. It is shown that Fe3O4spinel oxides are obtained when the deposition is performed under Ar atmosphere. These spinel-ferrite films present an important magnetization component perpendicular to the film plane. It is also shown that the Fe3O4films are converted to γ-Fe2O3by oxidation in air while retaining a uniaxial magnetic anisotropy. We interpret this induced magnetic anisotropy as arising from a magnetoelastic coupling with the substrate. Faraday rotation hysteresis loops confirm the existence of a strong induced uniaxial magnetic anisotropy in these films.  相似文献   

7.
The absorption Coefficient and the interband Faraday rotation of EuS, EuSe, and EuTe thin films have been measured as a function of the photon energy (1-6 eV), the temperature (2.7-300 K), and the applied magnetic field (0.1-11.5 kOe). From the Faraday rotation (FR) we compute the circular magnetic dichroism and from both and the optical constantsnandkwe derive the imaginary part of the off-diagonal elements of the complex conductivity tensor Im σxy. Integral values of the latter depend on the spin polarization of electronic states and permit a distinction between pd and fd transitions.  相似文献   

8.
We have investigated the magneto-optical properties of highly ordered Co-Pt alloy nanowire arrays embedded in anodic aluminum oxide templates. The magnetic field-dependent Stokes parameters, Faraday rotation angle and ellipticity were investigated by an in-house magneto-optical measurement system. The extracted hysteresis loops are broadly consistent with magnetic hysteresis loops obtained from the vibrating sample magnetometer. The maximum Faraday rotation angle and ellipticity of these samples were examined as a function of nanowire composition. With an increase of platinum content from 9 at.% to 86 at.% in the as-deposited nanowire arrays, the maximum Faraday rotation angle per length decreases linearly from 1.39 x 10(3) degrees/cm to 1.58 x 10(2) degrees/cm. The maximum ellipticity shows a similar behavior with the composition. These linear relationships suggest a dilution model for the magnetic moment in the alloy nanowires. Our results indicate that magneto-optical measurements comprise an effective and sensitive method for monitoring the behavior of AAO-based magnetic nanowire arrays.  相似文献   

9.
Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO x (52-x)SiO2 x 4P2O5 x xFe2O3 x 3Na2O (2 < or = x < or = 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050 degrees C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x > or = 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them.  相似文献   

10.
Ao Y  Xu J  Fu D  Ba L  Yuan C 《Nanotechnology》2008,19(40):405604
A novel magnetically separable photocatalyst (titania-coated carbon encapsulated magnetite: TCCEF) was prepared. The prepared composite photocatalyst was characterized with an x-ray diffractometer (XRD), a transmission electron microscope (TEM), a Fourier transform infrared spectrometer (FT-IR) and a vibrating sample magnetometer (VSM). The photocatalytic activity of the samples was determined by degrading model contaminated water, a phenol aqueous solution. The results were compared with single-phase titania (pure titania and Degussa P25) and Fe(3)O(4)/TiO(2), and enhanced photocatalytic activity was obtained. It is suggested that the enhanced photocatalytic activity is ascribed to two major factors. First, the encapsulation of magnetite into the carbon layer may inhibit the direct electrical contact of titania and magnetite, hence preventing the photodissolution of the iron oxide phase. Second, the enhanced hydroxyl groups on TCCEF may inhibit the recombination of electron-hole pairs. On the other hand, the magnetic photocatalyst can be easily recovered from a slurry with the application of an external magnetic field.  相似文献   

11.
Zhang M  He X  Chen L  Zhang Y 《Nanotechnology》2011,22(6):065705
In this study, a novel route for the preparation of magnetite (Fe(3)O(4)) nanoparticles (NPs) with immobilized metal affinity ligand iminodiacetic acid (IDA) charged with Cu(2+) was developed. First, magnetite nanoparticles were synthesized by a hydrothermal method. Charged with Cu(2+), the magnetic nanoparticles (MNPs) were applied to separate a model protein mixture of bovine hemoglobin (BHb) and bovine serum albumin (BSA). They could be separated completely and showed low non-specific adsorption. The morphology, structure and composition of the magnetite MNPs were characterized by transmission electron microscopy, power x-ray diffraction, x-ray photoelectron spectrometry and Fourier transform infrared spectroscopy. The resulting magnetite MNPs charged with Cu(2+) show not only a strong magnetic response to externally applied magnetic field, but are also highly specific to protein BHb. It is interesting that MNPs modified with metal ligands showed a property of magnetic colloid photonic crystals. Furthermore, they could efficiently remove the abundant protein bovine hemoglobin from bovine blood. They have potential application in removing abundant protein in proteomic analysis.  相似文献   

12.
The novel Bi-substituted rare-earth iron garnet films were grown by the modified liquid phase epitaxy (LPE) technique for use as a 45° Faraday rotator in optical isolators. First, single crystals of Y3Fe5O12 (YIG), with a lattice constant of 1.2378 nm, were grown by means of the Czochralski method. Using the seed crystal of YIG instead of the conventional non-magnetic garnet of Gd3Ga5O12 as a substrate, a film of BiYbIG was grown by means of the LPE method from Bi2O3–B2O3 fluxes. The structural, magnetic and magneto-optical properties of BiYbIG LPE film/YIG crystal composite have been investigated using directional X-ray diffraction, electron probe microanalysis, vibrating sample magnetometer and near-infrared transmission spectrometry. The saturation magnetization 4πMs has been estimated to be approximately 1200 G. The Faraday rotation spectrum was measured by the method of rotating analyzer ellipsometry with the wavelength varying from 800 to 1700 nm. The resultant Bi0.37Yb2.63Fe5O12 LPE film/YIG crystal composite showed an increased Faraday rotation coefficient due to doping Bi3+ ions on the dodecahedral sites of the magnetic garnet without increasing absorption loss, therefore a good magneto-optic figure of merit, defined by the ratio of Faraday rotation and optical absorption loss, has been achieved of 21.5 deg/dB and 30.2 deg/dB at 1300 nm and 1550 nm wavelengths, respectively, at room temperature. Since Yb3+ ions and Y3+ ions provide the opposite contributes to the wideband and temperature characteristic of Faraday rotation, the values of Faraday rotation wavelength and temperature coefficients were reduced to 0.06%/nm and 0.007 deg/°C at 1550 nm wavelength, respectively.  相似文献   

13.
张继军  王林军  施凌云 《功能材料》2011,42(5):831-833,837
采用垂直Bridgroan法制备出了x=0.2的Cd1-xMnxTe晶体(Cd0.8Mn0.2 Te).利用MPMS-7(magnetic property measurement system)型超导量子磁强计测量了Cd0.8Mn0.2Te晶体的磁化强度(M)与磁场强度(H)和温度(T)的关系,磁场强度范围为-159...  相似文献   

14.
We employ spin-quantum-beat spectroscopy to investigate the carrier-density dependence of the spin-precession frequency and the magnitude of the Faraday rotation of Cd1?x Mn x Te samples at fixed magnetic field. We find an onset of saturation of the Faraday rotation at carrier densities as low as 4× 1016 cm?3 and attribute it to electrons (not holes which dominate in other types of experiments). The spin splitting at fixed magnetic field remains density dependent down to 3 × 1015 cm?3 (the lowest density accessible in our measurements) which suggests a direct influence of the carrier-density on the sp–d exchange not mediated by screening effects.  相似文献   

15.
Growth from liquid phase epitaxy and magnetooptical properties of single crystal garnet films in (Pr Gd Yb)3-xBix(Fe Al)5O12 system are reported. The dependences of the distribution coefficient and the Bi content of the films on the growth temperature are analyzed. The influence of the growth condition on the magnetic and magneto-optical properties of the materials are described and discussed in order to obtain in planemagnetization films having large Faraday rotation (> 1 800 degr./cm) and figure of merit (50 – 80 degr./dB) suitable for integrated magnetooptics application.  相似文献   

16.
ABSTRACT

In this paper, we studied the influence of medium parameters and the wavelength of incident light on Faraday’s rotation and on the ellipticity of polarization. The results of comparison of these dependencies for bulk (unbounded) media, for a layer of a magnetically active medium of finite thickness and, finally, for a magneto-photonic crystal layer are investigated. The dependences of the reflection on the same parameters are investigated too.  相似文献   

17.
Trénec G  Volondat W  Cugat O  Vigué J 《Applied optics》2011,50(24):4788-4797
Faraday polarization rotators are commonly used in laser experiments. Most Faraday materials have a nonnegligible absorption, which is a limiting factor for high power laser optical isolators or for intracavity optical diodes. By using a stronger magnetic field and a shorter length of Faraday material, one can obtain the same polarization rotation and a reduced absorption. In this paper, we describe two permanent magnet arrangements that are easy to build and produce magnetic fields up to 1.7 T, substantially more than commonly used. The field homogeneity is largely sufficient for a 30 dB isolation ratio. We finally discuss the prospects for producing even larger fields with permanent magnets.  相似文献   

18.
超顺磁单分散性Fe3O4磁纳米粒的制备及性能表征   总被引:1,自引:0,他引:1  
具有超顺磁单分散性的Fe3O4磁纳米粒在生物医学材料领域有着广泛的用途. 本研究在水、乙醇和甲苯混合体系74℃回流的条件下制备了具有超顺磁性的表面含油酸的Fe3O4磁纳米粒,研究了制备过程中OH-浓度的变化对磁纳米粒的表面性能、粒径、分散性及磁性能的影响, 并对其机理进行了初步探讨. 采用XRD、FTIR、DLS、TEM和VSM等手段对制备的磁纳米粒进行表征. 结果表明, 当NaOH/Fe(Ⅱ)摩尔比<8时, Fe3O4磁纳米粒表面含油酸可良好地分散于非极性溶剂中, NaOH的加入对磁纳米粒的粒径和饱和磁化强度等性能无明显影响;而当NaOH/Fe(Ⅱ)摩尔比≥8时, Fe3O4磁纳米粒仅能分散于水等极性溶剂中, 饱和磁化强度虽可增至40A·m2/kg, 但为多分散且易团聚.  相似文献   

19.
We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe3O4 with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe12O9 with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 micro/m for the strontium hexaferrite powder. The micron-sized SrFe12O19 powder was prepared using a solid-state reaction. We investigated the influence of the filler concentration and the filler ratio (Fe3O4/SrFe12O19) in the polymer matrix on the microwave absorption in a large frequency range (1 / 18 GHz). The results obtained showed that the highly anisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe12O19 to the nanosized Fe3O4 filler in composites absorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new values of the saturation magnetization and of the anisotropy constant, differing from those of both SrFe12O1919 and Fe3O4, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorption characteristics in a controlled manner by way of introducing a second magnetic material.  相似文献   

20.
We present the preparation, structural and magnetic properties of nanosized magnetite obtained by the crystallization of a series of Fe-containing borosilicate glasses. Several compositions with the ratio Fe2O3/SiO2 spanning from 0.37 to 0.67 were investigated as a function of two nucleators Cr2O3 and P2O5, respectively, and modifiers and intermediates (Al2O3 and MgO). M?ssbauer spectroscopy revealed the degree, the type and the location of disorder induced by a specific composition and nucleators. In addition to magnetite, it was also revealed the presence of large amounts of Fe-rich paramagnetic phases. The magnetic response is analysed in relation with the amount of Fe ions which remain dispersed in the glassy matrix as noninteracting (paramagnetic) ions. We discuss the role of the nucleators on the disorder in both tetrahedral and octahedral sites of the magnetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号