首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on experimental investigations of acoustic emission by quartz tuning forks resonating at frequencies 32 kHz, 38 kHz, 77 kHz and 100 kHz immersed in cold gaseous 4He and its normal and superfluid liquid phases. Frequency dependence of the observed low-drive-linewidth at 350 mK together with the temperature and pressure dependences (1.3 K < T < 4.2 K, 0 < p < 25 bar) of the observed damping of the high frequency (77 and 100 kHz) resonators measured in normal liquid 4He and its superfluid phase provide strong and direct evidence of the importance of sound emission by these tuning forks. Three analytical models of acoustic emission by vibrating tuning forks are developed and compared with the experimental results. We also discuss the importance of sound emission for experiments with the commonly used 32 kHz tuning forks as well as other oscillating structures??spheres, wires, grids and various micromachined sensors. We compare the relative importance of dissipative losses due to laminar viscous/ballistic drag and acoustic emission in liquid and superfluid 4He.  相似文献   

2.
We present experimental results on crosstalk of non-electrical origin between high frequency quartz tuning forks immersed in the same volume of helium gas, liquid or superfluid. We compare these results with various observations of other groups and propose an explanation of this puzzling phenomenon. To the best of our knowledge, notable crosstalk has only been observed in superfluid helium both in the two-fluid regime and at very low temperatures, but was rarely seen to behave in a systematic way. We demonstrate some of its most significant properties—amplitude dependence within a short time span, long-term temporal instability, effects of the geometry of the setup and of obstacles placed between the tuning forks. Although the results are not fully understood, as the most likely explanation, we ascribe the observations to the coupling of tuning forks to standing acoustic modes inside the experimental volume, emphasizing the importance of second sound for understanding the observations at temperatures within the two-fluid regime (1 K<T<2.17 K). Finally, we suggest simple precautions leading to suppression of excessive acoustic crosstalk between oscillating objects in He II.  相似文献   

3.
Mechanical resonators, in the form of vibrating wires or torsional oscillators, have long been employed as sensors in liquid 3He and 3He–4He mixtures. The damping of resonators is due to the viscosity of the surrounding liquid which is a strong, well-known function of temperature for bulk Fermi liquids. It is therefore possible to use the viscous damping for thermometry in the millikelvin regime. An alternative sensor is the small quartz tuning fork which is driven by the piezoelectric effect and requires no external magnetic field. In this paper, we present measurements of the viscous damping of such a tuning fork when immersed in a 6.2% 3He–4He mixture, between 3 and 100 mK, and at zero and high (10 T) magnetic field. The measurements indicate that damping of the tuning fork resonance is dominated by the liquid helium properties and is insensitive to the applied magnetic field. The response of the tuning fork to the saturated helium mixture demonstrates that it could potentially be used for thermometry in any magnetic field. There is evidence of slip at the interface between the fork and the helium suggesting specular scattering from the smooth surface of the quartz. The fork is also able to detect the superfluid transition in pure liquid 3He.  相似文献   

4.
We continue our solid 4He flow experiments in which we grow solid helium samples at constant temperature in the hcp region of the phase diagram. We exploit the properties of liquid helium in a confined geometry (porous Vycor glass), and induce a mass flow through the solid at pressures higher than the bulk melting pressure. We previously observed flow, but our temperature was limited to T≥350 mK. At T≈400 mK it was found that the flow ceased at P≈27 bar, and no flow was observed for T>550 mK. We have begun to extend our measurements to lower temperatures, and our data show that at lower temperatures we observe flow at higher pressures.  相似文献   

5.
We have performed measurements of the temperature dependence of the nuclear spin-lattice relaxation times (T 1) for a wide range of 3He concentrations for dilute mixtures of 3He in solid 4He. The temperatures for phase separation are determined for 3He concentrations 500<x 3<2000 ppm for a molar volume V M =20.7 cm3. We report the temperature dependence of the nuclear spin-lattice relaxation times for 3He in the droplets formed after phase separation at low temperatures. The temperature dependence suggests that the interface 3He atoms responsible for the relaxation are degenerate, not solid-like.  相似文献   

6.
The Galitskii-Migdal-Feynman (GMF) formalism is applied to liquid 3He and (for the first time) to liquid 4He. The effective total, diffusion and viscosity cross sections, as well as the effective scattering length and the effective range, are calculated. For liquid 3He, it is found that S-wave scattering dominates for wave number k<0.5 Å?1. At the Fermi momentum k F, the effective partial cross section σ ? (and thus the total cross section σ T) has a singularity (virtual state). This singularity may be interpreted as a signature of superfluidity or a quasi-bound state. For k>2 Å?1, the effective total cross section is nearly constant. On the other hand, it is found in liquid 4He that S-wave scattering dominates for k<0.3 Å?1, and a peak exists in σ T arising from a peak in the effective D-wave cross section. This resonance corresponds to a quasi-bound state trapped by the ?=2 centrifugal barrier. The most prominent features of our calculations are a resonance and a Ramsauer-Townsend minimum in the matter cross section at low temperatures. This effect is absent in the 3He gas. It is, therefore, a purely many-body effect in liquid 3He. With increasing energies, the matter results approach the vacuum results. This indicates that the high-energy behavior is dominated by the self-energy contribution; the many-body effects can be neglected.  相似文献   

7.
Novel mechanical resonators based on micro-electro-mechanical systems (MEMS) technology were developed for the study of superfluid 4He. The MEMS device is composed of two parallel plates, the movable plate suspended by four serpentine springs above the substrate, forming a shear mechanical oscillator. A specific device with a 1.25 μm gap was tested in the superfluid phase of 4He. At temperatures below 400 mK the device exhibits nonlinear and hysteretic behavior when the excitation exceeds a threshold. The anomalies are reminiscent of quantum turbulence and vorticity effects observed in other mechanical oscillators such as tuning forks or vibrating grids.  相似文献   

8.
By the method of oscillating tuning fork, we carried out researches of the transition to turbulence in superfluid solution of 5% 3He in 4He at temperatures of 100 mK–300 mK. The critical velocity υ c of the turbulence appearance is determined through measuring the volt-ampere characteristics. It is established that in the mixture the temperature dependence of the critical velocity is non-monotonous and differs strongly from that in pure 4He. Unlike 4He, the step-like anomalies on resonance curves were observed which, presumably, is connected with instability of the vortex system under the conditions where the core of the vortex is filled by the atoms of 3He. It is shown that such anomalies appear at the temperatures below 0.9 K, at the same time at temperatures below ~0.5 K they appear even at υ<υ c .  相似文献   

9.
We have been studying the behaviour of commercial quartz tuning forks immersed in superfluid 4He and driven at resonance. For one of the forks we have observed hysteresis and switching between linear and non-linear damping regimes at temperatures below 10 mK. We associate linear damping with pure potential flow around the prongs of the fork, and non-linear damping with the production of vortex lines in a turbulent regime. At appropriate prong velocities, we have observed metastability of both the linear and the turbulent flow states, and a region of intermittency where the flow switched back and forth between each state. For the same fork, we have also observed anomalous behaviour in the linear regime, with large excursions in both damping, resonant frequency, and the tip velocity as a function of driving force.  相似文献   

10.
We present an experimental study of the decay of He II turbulence created mechanically, by a bellows-induced flow past a stationary grid in a 7×7 mm2 superfluid wind tunnel. The temporal decay L(t) originating from various steady-states of vortex line length per unit volume, L 0, has been observed based on measurements of the attenuation of second-sound, in the temperature range 1.17 K<T<1.95 K. Each presented decay curve is the average of up to 150 single decay events. We find that, independently of T and L 0, within seconds past the sudden stop of the drive, all the decay curves show a universal behavior lasting up to 200 s, of the form L(t)∝(t?t 0)?3/2, where t 0 is the virtual origin time. From this decay process we deduce the effective kinematic viscosity of turbulent He II. We compare our results with the bench-mark Oregon towed grid experiments and, despite our turbulence being non-homogeneous, find strong similarities.  相似文献   

11.
We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at \(T = 0.365\hbox { K}\) in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at \(T = 0.365\hbox { K}\), the changes in added mass with pressure according to the pressure dependence of He II density.  相似文献   

12.
The \(^{3}\)He impurity influence on the oscillations of a quartz resonator and thus its drag coefficient in a laminar flow of a superfluid \(^{3}\)He–\(^{4}\)He mixture has been investigated. The temperature dependences of the resonance curves were measured on quartz tuning forks with a resonance frequency 32 kHz in vacuum in superfluid mixtures with \(^{3}\)He concentrations of \(x_{3}=0.05\) and 0.15 in a wide range of driving forces at temperatures from 0.5–2.5 K. The results obtained were used to plot the temperature dependence of the drag coefficient. With the help of the normalization on the effective area of the oscillating body, the concentration dependence of the drag coefficient of the quartz tuning fork and the vibrating sphere in superfluid solutions has been constructed and analyzed.  相似文献   

13.
On the basis of the equation of state and the phase equilibrium equations of helium-3 (3He), a computer program for calculating the thermodynamic properties of 3He has been created. With this program, many iso-property tables were prepared for generating ph and Ts diagrams of 3He over the range of temperature from 0.2 K to 300 K and pressures up to 300 MPa. Compared with the previous diagrams plotted with interpolated experimental data sets, the new ones are more thermodynamically consistent and cover a broader temperature and pressure range. The estimated overall random errors of the diagrams are within 2 %.  相似文献   

14.
The thermodynamic properties of liquid 3He-4He mixtures at pressures of up to 10 bar and temperatures below 1.5 K are determined. The calculations are based on previously determined thermodynamic properties of 3He-4He mixtures at saturated (zero) pressure, and available experimental measurements of the molar volume, which are used to determine an expression for the molar volume. Since available experimental data for mixtures at higher pressures are restricted to low temperatures (below about 0.7 K), the calculated molar volumes at high pressure and high temperature are largely based on pure 3He and pure 4He data.  相似文献   

15.
We have carried out quartz crystal microbalance (QCM) experiments for 4He films on an exfoliated single-crystalline graphite using a 32 kHz tuning fork, and have measured the temperature dependence of the resonance frequency and the Q value for various areal densities and oscillation amplitudes. Comparing with the previous experiments for Grafoil, the decoupling of the films due to the slippage or the superfluidity was larger than that of Grafoil, and the competition between the slippage and the superfluidity was observed in three-atom thick films. Furthermore, it was found that the slippage is suppressed gradually at higher temperature than the superfluid onset T c , and that the relaxation time decreases at low temperatures while it obeys the Arrhenius law at high temperatures. These results suggest a precursor to the superfluidity of 4He films.  相似文献   

16.
We present the application of a fast quasi-adiabatic continuous method to the measurement of specific heat at 4He temperatures, which can be used for the study of a wide range of materials. The technique can be performed in the same configuration used for the relaxation method, as the typical time constants between calorimetric cell and thermal sink at 4.2 K are chosen to be of the order of τ~30 s. The accuracy in the absolute values have been tested by comparing them to relaxation-method results obtained in the same samples (performed in situ using the same set-up), with a deviation between the absolute values <3 % in the whole temperature range. This new version of the continuous calorimetric method at low temperatures allows us to completely characterize and measure a sample within a few hours with a high density of data points, whereas when employing other methods we typically need a few days. An exhaustive study has been performed for reproducibility to be tested. In the present work, we have applied this method to two different substances: CeSb2, which exhibits three magnetic transitions at 15.5 K, 11.7 K and 9.5 K, and graphite, both highly-oriented pyrolytic graphite (HOPG) and natural crystals. Our results on these graphites are discussed in comparison with previous published data on different kinds of graphite samples.  相似文献   

17.
We report systematic measurements of the response of a Vibrating Wire Resonator (VWR) in normal and superfluid liquid 3He. Special attention has been paid to the hydrodynamic regime of the superfluid B-phase, where the response parameters of the VWR do not follow a simple law. We show that a simple interpolation between the region where first order slip-corrections can be applied and the ballistic regime is insufficient. Measuring an empirical effective viscosity, we propose a temperature calibration method which allows the use of VWRs as a secondary thermometer at intermediate and high pressures in the temperature range 0.2 T c < T < 50 mK.  相似文献   

18.
We made heat-capacity measurements of two dimensional (2D) 3He adsorbed on graphite preplated with monolayer 4He in a wide temperature range (0.1≤T≤80 mK) at densities higher than that for the 4/7 phase (=6.8 nm?2). In the density range of 6.8≤ρ≤8.1 nm?2, the 4/7 phase is stable against additional 3He atoms up to 20% and they are promoted into the third layer. We found evidence that such promoted atoms form a self-bound 2D Fermi liquid with an approximate density of 1 nm?2 from the measured density dependence of the γ-coefficient of heat capacity. We also show evidence for the first-order transition between the commensurate 4/7 phase and the ferromagnetic incommensurate phase in the second layer in the density range of 8.1≤ρ≤9.5 nm?2.  相似文献   

19.
We have investigated the influence of the damping force acting on high quality tuning forks (Q??106) of different sizes and geometries in superfluid 3He-B at temperatures below 200 ??K and a pressure of 0.1 bar. The measurements show that at low velocities, the damping of the largest fork expressed in terms of its resonance characteristic width ??f 2 rises up as its velocity increases. This is in contradiction to the damping of the fork due to Andreev reflection and it may be caused by the interaction of this fork with excitations trapped in the Andreev bond states. We present our preliminary experimental results.  相似文献   

20.
We study the hydrodynamics of quantum 4He crystal oscillations in a superfluid liquid with involving the dynamics of atomically rough surfaces. It is shown that, due to enhancement of the kinetic growth coefficient as the temperature lowers, the reaction force of the liquid applied to the 4He crystal changes its character from the inertial to the viscous one vanishing as T→0. The model is confirmed by the experiments on the oscillations of the 4He crystal within the temperature range 0.54–1.43 K at frequencies 484 and 211 Hz. New type of a hydrodynamic instability is found. The instability occurs provided that the oscillation amplitude of the velocity becomes higher than ~3 cm/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号