首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
试验的700 MPa级低碳贝氏体钢由30 kg真空感应炉熔炼铸成断面100 mm×50 mm扁锭-轧成12mm板。通过CCT曲线和3~30℃/s冷却速度下组织的分析,研究0.01Ti-0.03Nb和0.06Ti-0.05Nb两种微合金化对(%)0.059~0.066C、1.41~1.67Mn、0.30~0.36Si、0.37~0.48Cu、0.21~0.24Ni、0.18~0.22Mo、0.000 8~0.002 2Bs、0.002 6N低碳贝氏体组织和力学性能的影响。结果表明,0.06Ti-0.05Nb钢的强度高于0.01Ti-0.03Nb钢,但前者Ti含量高,-40℃冲击功较后者低。700 MPa级低碳贝氏体钢合适的微合金化Ti-Nb成分为0.04%~0.05%Nb-0.015%~0.025%Ti。  相似文献   

2.
超纯Fe-18Cr-2Mo不锈钢经合金化处理后性价比优良,在行业内受到越来越多的重视.研究了单独加Ti和Ti-Nb复合添加的超纯Fe-18Cr-2Mo不锈钢热轧板的冲击韧性及影响因素.结果表明,在wTi+ Nb/wC+N=9的条件下,Ti-Nb复合添加的钢韧脆转变温度(DBTT)较Ti单独添加的钢低35℃.含Ti钢中,3~5 μm的TiN析出物居多;Ti-Nb复合添加的钢中,1 ~3 μm的TiN析出物居多,此外含有200 nm左右的以TiC为核心的(NbTi)C复合相及100 nm左右NbC.低于DBTT时冲击,试验钢沿{100}晶面发生脆性解理断裂.细化TiN析出物,增加细小球形、椭球形的富Nb碳化物,同时降低碳在钢中的固溶量,有利于试验钢冲击韧性的提高.  相似文献   

3.
殷胜  朱红丹 《特殊钢》2016,37(1):68-70
Ti-Nb微合金高强度钢板的生产流程为206 t顶底复吹转炉-LF-RH-230 mm铸坯-连轧成3~7mm板工艺。将原0.045Nb-0.015Ti微合金化钢优化成0.070Ti-0.015Nb微合金化钢后,其焊接性能和低温冲击性能优良,并具有良好的综合力学性能。使用结果表明,0.070Ti-0.015Nb微合金化钢与0.045Nb-0.015Ti微合金钢相同,满足加工和服役要求,但成本有明显降低。  相似文献   

4.
尹桂全  张纯明  刘开升 《钢铁》2002,37(4):53-56,38
用透射电子显微镜研究了系列微Ti钢中焊接热模拟冷却期间第二相粒子尺寸分布参数与试样成分(钛和铌含量)、冷却时间t8/5以及冲击韧性的关系。试验结果表明,钢中细小弥散的第二相粒子对冲击韧性的改善具有重要的作用;焊后冷却期间,高温未溶的细小第二相粒子发生了溶解、长大和析出,皆与试样成分及冷却时间有关。Ti-Nb钢中第二相粒子(Ti,Nb)N的稳定性不如Ti钢中的TiN。Ti、Nb复合微合金化对焊后韧性的改善作用不如仅用微Ti合金化的钢。  相似文献   

5.
为了实现汽车车身骨架轻量化,研发了750 MPa级Nb-Ti-Mo复合微合金化方管用钢。采用OM、SEM和TEM等分析方法对750 MPa级Nb-Ti-Mo复合微合金化方管用钢的显微组织与性能进行了分析。结果表明,采用低C、低Mn、Nb、Ti和Mo复合微合金化成分体系,通过优化卷取工艺路线,得到的750 MPa级Nb-Ti-Mo复合微合金化方管用钢的显微组织为全铁素体和大量弥散分布的纳米级析出物,材料具有优异的综合力学性能。750 MPa级Nb-Ti-Mo复合微合金化方管用钢采用直接成方工艺制管后,材料性能与母材基本相当;采用圆变方工艺制管后,随着管径的下降,强度明显提高,塑性逐渐降低,伸长率依然大于14%。750 MPa级Nb-Ti-Mo复合微合金化方管用钢替代传统的Q235、345C、510L等低强度钢材应用于车身骨架,减重比例高达30%,减重效果显著。  相似文献   

6.
研究了铁水脱硫处理-150 t转炉-RH-保护浇铸-控轧控冷工艺生产的Ti微合金化Q345D钢(/%:0.15C,0.27Si,1.36Mn,0.019Ti,0.011P,0.003S,0.026Als)30 mm×2500 mm中板的力学性能、组织和析出物。结果表明,Ti微合金化Q345D钢的抗拉强度≥525 MPa,屈服强度≥390 MPa,延伸率≥29%,-40℃冲击功125 J;该钢组织为珠光体+铁素体+少量索氏体,晶粒度为12~14级;钢中夹杂物主要为MnS和Ti_4C_2S_2,钢中析出物为50~250 nm弥散分布的TiN;钢的强度增加主要是TiN细晶强化作用引起的。  相似文献   

7.
研究了唐山不锈钢公司1580热轧机组生产的钛(Ti)微合金化钢Q420B的力学性能、组织和析出物。结果表明,Ti微合金化的Q420B热轧钢带的强度达到了520MPa以上,屈服强度达到470MPa以上,延伸率达到30%以上,满足客户使用要求。Ti微合金化的Q420B钢中夹杂物为B类夹杂,析出物为碳化钛(Ti C),其强化机制为Ti C沉淀强化。  相似文献   

8.
文章对比分析了低C+Mn+Ti和低C+Mn+Ti+Nb两种成分设计的700 MPa级大梁钢组织和性能,结果表明,在相同强度情况下,单Ti微合金化产品和Nb-Ti复合微合金化产品塑性相同,但低温冲击韧性较差,前者在-20℃发生脆性转变,而后者在-50℃才发生脆性转变。通过提高粗轧首道次压下量和中间坯厚度有助于改善单Ti微合金化大梁钢低温冲击韧性,使其达到Nb-Ti复合微合金化产品控制水平。  相似文献   

9.
超细晶高强贝氏体钢析出相的研究   总被引:1,自引:0,他引:1  
利用透射电镜观察分析了武钢生产的新一代超细晶粒800 MPa级钢卷的显微结构.研究发现钢卷的晶粒结构已细化到3~5 μm,组织主要是板条贝氏体;第二相析出物主要为(Ti, Nb)(C,N)和CuxS (x=1~2),CuxS析出颗粒形貌呈长椭圆或长条形,Nb含量高的析出物则为圆球形;大颗粒析出物(150~250 nm)是含Mn相对较高的Nb、Ti和Cu的复合析出物,其中MnS为核心,Nb、Ti和Cu的析出物规则地分布在MnS颗粒两边.  相似文献   

10.
杨延辉  王毛球  陈敬超  董瀚 《钢铁》2013,48(7):53-57,83
利用旋转弯曲疲劳试验方法,研究了Nb和Ti微合金化20CrMn齿轮钢(20CrMnNb钢:w(Nb)0.077%;20CrMnTiNb钢:w(Nb)0.048%+w(Ti)0.038%)经1 000℃高温渗碳后的疲劳性能。结果表明,Nb-Ti复合微合金化的20CrMnTiNb钢中析出相尺寸小、数量多,其渗碳层原奥氏体晶粒平均尺寸明显低于Nb微合金化的20CrMnNb钢,因而20CrMnTiNb钢的疲劳极限高于20CrMnNb钢。疲劳断口观察发现,20CrMnNb和20CrMnTiNb钢主要以近表面基体方式起裂,渗碳层中疲劳裂纹沿晶界扩展,因而晶粒尺寸较细的20CrMnTiNb钢的疲劳性能较高。  相似文献   

11.
开发的20 mm低成本铌钛硼微合金化低碳钢板(/%:0.06C、0.40Si、1.60Mn、0.010P、0.005S、0.050Nb、0.012Ti、0.002B)的生产流程为130 t顶底复吹转炉-LF-RH-250 mm板坯连铸-4300轧机轧制-直接淬火-回火工艺。通过终轧≥900℃,以≥20℃/s冷却速度直接淬火,500℃回火,20 mm钢板抗拉强度Rm为855 MPa,屈服强度R0.2771 MPa,延长率A 16%,0℃冲击功Akv2 217~238J, -40℃ Akv2 137~181J。该钢的回火组织为细小的贝氏体板条,宽度为0.5~1.0μm,并有较多弥散分布的30~90 nm Nb+Ti碳氮化物析出。  相似文献   

12.
殷胜  万兰凤 《特殊钢》2012,33(3):29-31
开发的Nb-Ti微合金高强钢(/%:0.04C、0.34Si、1.40Mn、0.010P、0.004S、0.098Nb、0.020Ti、0.045Al、0.002 5N)由真空感应炉冶炼、50 kg钢锭40 mm锻造板坯经试验室单架轧机于1 200℃7道次轧制成10mm板,末道次压缩比≥15%,终轧温度880℃,喷水冷却至600℃,置于热处理炉600℃30 min,炉冷至室温,分别模拟层流冷却和卷取工艺。该钢经Gleeble 3500热模拟机试验得出,高温低塑性区为650~800℃和≥1 300℃。力学性能试验结果为下屈服强度Rel625~640 MPa,抗拉强度Rm705~710 MPa,伸长率18.0%~19.5%。所开发的钢具有碳当量低,焊接性能好,成本低等特点。  相似文献   

13.
朱红一 《特殊钢》2009,30(3):50-51
安阳钢铁公司通过100 t转炉-100 t LF-200 mm×1 500 mm连铸机-2800 mm中板轧机生产流程开发了Nb微合金化高强度船板。生产数据统计结果表明,通过精确控制钢的成分(%:0.13~0.16C、0.33~0.43Si、1.31~1.42Mn、0.007~0.014P、0.005~0.0185、0.021~0.039A1、0.018~0.022Nb),精轧开始温度950℃,精轧累积压下率≥50%,终轧温度780~850℃,使AH36牌号6~25 mm钢板的晶粒度为9~9.5级,屈服强度360~475 MPa,抗拉强度490~610 MPa,δ5伸长率18%~36%,0℃冲击功110~221J。  相似文献   

14.
试验低碳贝氏体钢(/%:0.08C,0.11~0.13Si,1.10~1.20Mn,0.008~0.009P,0.002S,0.21~0.23Ni,0.020~0.021Ti,0.003~0.004Nb,0~0.0010B,0.000 7~0.0008O,0.0031~0.0033N)由50kg真空感应炉熔炼,轧成45mm钢板,并经930℃淬火,610℃回火。研究了0.0010%硼对780 MPa低碳贝氏体钢45mm板组织和力学性能的影响。结果表明,硼可显著提高试验钢的淬透性,不含硼试验钢淬火后得到粒状贝氏体,0.0010%硼试验钢淬火后得到板条贝氏体。硼明显改善试验低碳贝氏体钢的力学性能,含0.0010%硼试验钢淬、回火后的抗拉强度834MPa和屈服强度771MPa远高于不含硼试验钢的抗拉强度702MPa和屈服强度591MPa,实际生产中应加入适量硼可使低碳贝氏体钢得到板条贝氏体。  相似文献   

15.
设计和开发了压路机振轮用耐磨钢NM360(/%:0.10~0.15C,0.50~1.50Mn,≤0.001P,≤0.008S,0.20~0.50Mo,0.015~0.03Nb,0.018~0.15Ti,≥0.035Als,0.001 2~0.003 0B,≤0.008N,≤0.0003 H,≤0.003O)32 mm板...  相似文献   

16.
殷胜  朱红丹 《特殊钢》2019,40(1):16-18
设计和开发了屈服强度750 MPa低合金高强度集装箱用钢(/%:0.06~0.09C,0.25~0.35Si,1.60~1.80Mn, ≤0.015P,≤0.003S,0.10~0.20Mo,0.05~0.06Nb,0.09~0.11Ti,≥0.0015Ca,≥0.015Alt)。试验钢的工艺流程为260 t BOF-LF-RH-230 mm板坯连铸-热轧成2~6 mm板。通过Nb-Ti复合微合金化和Ca处理,控制精轧结束温度840~880℃,层流冷却速度≥60℃/s,卷取520~580℃,热轧钢卷的冷却速度≤10℃/h等工艺措施,热轧带钢具有良好的表面质量,组织为细晶铁素体+Nb-Ti碳氮化物,力学性能为上屈服强度760~790 MPa,抗拉强度860~910 MPa,伸长率21%~25%,满足用户要求。  相似文献   

17.
8~10 mm J55石油套管用钢板的生产流程为铁水预处理-120 t顶底复吹转炉-LF精炼-87 mm薄板坯连铸-连轧工艺。通过在原有0.015%~0.025%Nb微合金化钢的基础上优化J55石油套管钢的成分(/%:0.16~0.18C,0.5~0.7Mn,≤0.20Si,≤0.025P,≤0.010S,0.03~0.04Cr, 0.01~0.03Ti,0.005~0.010Nb),转炉出钢加200~400 kg铝镁钙预脱氧、精炼过程喂铝线深脱氧,T[O]≤20×10-6时钙处理,板柸加热温度1 100~1 130℃,终轧855~860℃,轧后快速冷却,(610±10)℃卷取等工艺措施,成品钢板屈服强度437~465 MPa,抗拉强度549~575 MPa,伸长率30%~36%,-20℃冲击功60~96 J,180°冷弯合格,各项性能稳定。  相似文献   

18.
 采用热模拟渗碳方法研究了Ti、Ti-Nb微合金化的20CrMnTi和20CrMnTiNb渗碳齿轮钢在930~1200℃的奥氏体晶粒长大规律。结果表明,添加0. 038%(质量分数,下同)的钛和0. 048%的铌的20CrMnTiNb钢中含有铌和钛的析出相,其粒子间距为0. 361μm;而含0. 054%的钛的20CrMnTi钢中仅含有较大尺寸的TiN析出相,粒子间距为0. 471μm,前者奥氏体晶粒粗化倾向明显低于后者。20CrMnTiNb钢经1000℃奥氏体化10h后奥氏体晶粒长大不明显,且无混晶现象,适合高温渗碳工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号