首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we investigate the experimental fatigue crack-growth behaviour of centrally cracked aluminium panels in mode-I condition which have been repaired with single-side composite patches. It shows that the crack growths non-uniformly from its initial location through the thickness of the single-side repaired panels. The propagated crack-front shapes are preformed for various repaired panels with different patch thicknesses. It is shown that there are considerable differences between the crack-front shapes obtained for thin repaired panels with various patch thicknesses. However, the crack-front shapes of thick repaired panels are not significantly changed with various patch thicknesses. Furthermore, effects of patch thickness on the crack growth life of the repaired panels are investigated for two typical thin and thick panel thicknesses. It shows that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extended about 21–35% using a 4 layers patch, and implementing 8 and 16 layers patches has not a significant effect on the life extension with respect to the 4 layers patch life.  相似文献   

2.
《Composites Part A》2007,38(4):1141-1148
Crack-front shape is an important parameter influencing the stress intensity factor and crack propagation rate in asymmetric repaired panels. In this study, the numerical and experimental fatigue crack growth behaviour of centrally cracked aluminum panels in mode-I condition repaired with single-side composite patches are investigated. It is shown that the crack growths non-uniformly from its initial location through the thickness of a single-side repaired panel. There is a good agreement between the propagated crack-front shapes obtained from finite element analysis with those obtained from the experiments for various repaired panels with different patch thicknesses. Furthermore, effects of plate and patch thickness on the crack growth life of the repaired panels are investigated. The experimental results show that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extend about 21–35% using a 4 layers patch. Implementing of 8 and 16 layers patches has not a significant effect on the life extension of thick panels with respect to the 4 layers patch life.  相似文献   

3.
In this paper, experimental fatigue crack growth of thick aluminium panels containing a central inclined crack of 45° repaired with single-side glass/epoxy composite patch are performed. It is shown that, the technique of single-side repair using glass/epoxy composite patch is effective in the crack growth life extension of the thick panels in mixed-mode conditions. It is also shown that the crack-front of the propagated cracks of the repaired panels has a curvilinear shape which is the effect of the existed out-of-plane bending due to the asymmetry conditions in the single-side repaired panels. It is indicated that the crack propagation path at patched surface is different from the un-patched surface of the panels. In the primary stages of the crack growth, the crack surfaces through the thickness, in the vicinity of the mid-plane propagate without surface twisting. There are considerable differences between the obtained crack growth path at patched and un-patched surfaces of the panels which mean that the crack propagation surfaces have three-dimensional patterns. Using the various thin patch lay-ups has minor effects on the crack re-initiation life of the repaired thick panels. It is shown that using various four layers patch lay-up configurations, the crack propagation life of the cracked panels may increase by the order of 30–85%. The most fatigue crack growth life extension belongs to the repaired panel with the patch lay-up of [90]4.  相似文献   

4.
Three dimensional finite element analyses of the single-side repaired panels using glass/epoxy composite are performed considering the general mixed mode conditions and real crack-front shape modeling (RCFM) during the crack propagation procedure. Variations of the fracture parameters through the thickness of the panels for the initial crack configuration and crack growth behavior of the repaired panels with various patch lay-ups are investigated. The effect of considering K III on the small and large crack growth of repaired panels are also studied. The obtained lives are compared with the previously obtained lives using simplified FEM procedure and experimental results by the authors.  相似文献   

5.
In this paper, experimental and numerical fatigue crack growth of thin aluminium panels containing a central inclined crack of 45° with single-side glass/epoxy composite patch are performed. Effects of patch lay-up configuration on the restarting crack growth (crack re-initiation) life and crack growth rate of the repaired panels are investigated. The obtained experimental results are compared with those predicted using finite element analysis based on both mid-plane and unpatched surface fracture parameters. In the finite elements analyses, it is assumed that the crack-front remains perpendicular to the panel's surfaces during its propagation. It is shown that the finite element crack re-initiation and propagation lives predictions using the unpatched surface results are too conservative. However, the finite element mid-plane results lead to a non-conservative life prediction. It is experimentally shown that, the most effective patch lay-up configurations to retard the crack growth of the repaired panels is [−45/+45]2; however, the most life extension including the crack propagation cycles belongs to the patch lay-up of [904]. It is also shown that using the asymmetric patch lay-up configuration similar to [902/02] with a proper bonding process may lead to a very slow crack growth rate, even slower than the patch lay-up of [904].  相似文献   

6.
Fatigue crack growth behavior in a stiffened thin 2024-T3 aluminum panel repaired with one-sided adhesively bonded composite patch was investigated through experiments and analyses. The patch had three plies of unidirectional boron/epoxy composite. 2024-T3 aluminum stiffeners were riveted as well as bonded on the panel. Stiffeners were oriented in the loading direction and were spaced at either 102 mm or 152 mm with a crack centered between them. Also, un-repaired cracked panel with and without stiffeners were studied. Experiment involved tension-tension fatigue at constant amplitude with maximum stress of 120 MPa and stress ratio of 0.05. Bonded composite patch repair increased fatigue life about five-fold in the case of stiffened panels while it increased about ten fold in the case of un-stiffened panels. Fatigue life also increased with decrease of the distance between the stiffeners for both repaired and un-repaired panels. A three-dimensional finite element method was used to analyze the experiments. Residual thermal stresses, developed during patch bonding, requires the knowledge of temperature at which adhesive becomes effective in creating a bond between the structure and patch in the analysis. A simple method to estimate the effective curing temperature range is suggested in this study. The computed stress intensity factor versus measured crack growth relationships for all panel configurations were consistent and in agreement with the counterpart from the test material. Thus, the present approach provides a means to analyze the fatigue crack growth behavior of stiffened structures repaired with adhesively bonded composite patch.  相似文献   

7.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

8.
9.
A combined boundary element method and finite element method (BEM/FEM) is employed to investigate the fatigue crack growth behavior of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced polymer (FRP) composite patch. Numerical simulation of crack growth process of a cracked aluminum panel repaired with a FRP composite patch under uniaxial cyclic loading has been carried out. The curve of crack length on unpatched side of the cracked panel versus the number of cyclic loading is determined by the numerical simulation, and it agrees well with experimental data. Furthermore, the crack front profiles of the cracked panel during fatigue crack growth and the distributions of stress intensity factors along crack fronts are also numerically simulated.  相似文献   

10.
Repaired panels with composite patches subjected to fatigue loading may fail due to the progressive debonding between the composite patch and aluminium panel. The objective of this paper is to study the initiation and propagation of a possible fatigue debonding in the adhesive layer while the crack also growths in the panel for single-side repaired aluminium panels. For this purpose three dimensional finite elements method with a thin layer solid like interface element is employed. Fracture mechanics approach is used for the analysis of crack growth in aluminium panel and the interface elements with fatigue constitutive law for mixed mode debonding growth in the adhesive layer. A user element routine and a damage model material routine were developed to include the interface element and to simulate the initiation and propagation of damage in adhesive layer under cyclic loading. It is shown that, the debonding propagation and crack growth rate of the repaired panels depend on the composite patch material and interface bonding properties significantly. It is also shown that using of patch material with higher elastic module leads to the faster damage or debonding growth in the adhesive layer during the fatigue loading.  相似文献   

11.
A two-dimensional finite element analysis is presented to predict crack growth behavior of cracked panels repaired with bonded composite patch. Fatigue experiments were conducted with precracked aluminum specimens of two thicknesses (1 and 6.35 mm), with and without debond, and repaired asymmetrically. Fatigue lives of thick and thin repaired panels extended four and ten times relative to unrepaired cases, respectively. The predicted fatigue crack growth rates were in agreement with experimental values at the unpatched face but not at the patched face. Thus, the present analysis provides a conservative assessment of durability and damage tolerance of repaired thin and thick panels.  相似文献   

12.
This study introduces an analytical procedure to characterize the fatigue crack growth behavior in an aluminium panel repaired with a bonded composite patch. This procedure involves the computation of the stress intensity factor from a two-dimensional finite element method consisting of three layers to model cracked plate, adhesive and composite patch. In this three layer finite element analysis, as recently introduced by the authors, two-dimensional Mindlin plate elements with transverse shear deformation capability are used. The computed stress intensity factor is then compared with the experimental counterpart. The latter was obtained from the measured fatigue crack growth rate of an aluminium panel with a bonded patch by using the power law relationship (Paris Law) of an unpatched aluminum panel. Both a completely bonded patch (with no debond) and a partially bonded patch (with debond) are investigated in this study. This procedure, thus, provides an effective and reliable technique to predict the fatigue life of a repaired structure with a bonded patch, or alternatively, it can be used to design the bonded composite patch configuration to enhance the fatigue life of cracked structure.  相似文献   

13.
In this study, experimental and numerical investigations were carried out in order to compare the performances of composite and metallic patches for repairing aircraft structures. In the experimental part, an accelerating aging of the composite was realized by the immersion of the composite patch in distilled water. The fatigue lives of notched plates repaired with aged composite patch, non-aged composite patch and aluminum patch were measured. The obtained results show that the composite patch is more beneficial than the aluminum patch if there is no significant water absorption by the composite. In the numerical part, the stress intensity factor at the crack tip was computed for aged and non-aged composite patches and for aluminum patches. The numerical results confirm the experimental ones, the reduction of the stress intensity factor by the composite patch is more significant than the aluminum patch but the water absorption reduces significantly the repair efficiency.  相似文献   

14.
采用单向硼/环氧复合材料补片真空袋压工艺单面修复含中心裂纹不同厚度铝合金板,测试了修复试件的疲劳性能,从疲劳寿命、疲劳裂纹扩展速率和裂纹扩展纹线考察不同厚度铝合金板修复后疲劳性能的差异。结果表明:硼/环氧补片胶接修复后,铝合金板的疲劳寿命大幅度提高,且疲劳寿命提高幅度随铝合金板厚度增大而降低。厚度为1.76mm、5.20mm和10.20mm 3种铝合金板修复试件的疲劳寿命分别是未修复试件的22.30倍、12.84倍和8.40倍。厚度为1.76mm铝合金板修复试件在铝合金板完全断裂后还能继续承担疲劳载荷,而厚度为5.20mm和10.20mm 2种铝合金板修复试件在铝合金板断裂后完全破坏。裂纹扩展速率和归一化裂纹长度差均随铝合金板厚度增大而增大。  相似文献   

15.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

16.
In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.  相似文献   

17.
Adhesively bonded composite patch repair is efficient means to regain load carrying capacity, alleviate the crack growth, and improve the service life of the damaged structure. In this paper, three dimensional finite element models are developed to examine the fracture behavior of a single edge V-notched Aluminum plate repaired with Kevlar-49/epoxy or e-glass/epoxy pre-preg patches on both sides. Contour integral method was used for evaluating the stress intensity factor (SIF), an indicator of the crack stability. The load transfer mechanisms, stress distribution, damage variable (D), and crack mouth opening displacement (CMOD), were also presented to estimate the effectiveness of composite patch repair. The influence of the patch material, crack length and the adhesive thickness has been investigated. Results have shown that the crack induced damage increased nonlinearly with a larger crack size. With the composite patch repairs, SIF is reduced to 1/7–1/10 of that of the bare plate and CMOD decreased by 79%. The damage variable is reduced significantly and the load capacity is increased. A thinner adhesive layer results in a higher percentage of load shared by the composite patch.  相似文献   

18.
Structural health monitoring of fatigue-cracked aircraft structural panels repaired with bonded FRP composite patches for extending the service life of aging aircraft has received wide attention. In this paper a method for identifying the locations and shapes of crack and disbond fronts in aircraft structural panels repaired with bonded FRP composite patches is presented. The identification is performed by minimizing the residual norm between the measured in-plane strain range on a strain measurement plane in the FRP composite patches and the calculated in-plane strain range. Several numerical examples of identification of the locations and shapes of crack and disbond fronts are examined. The effects of the number of strain measurement points, position of the strain measurement plane, and measurement errors of the in-plane strain ranges on the identification results are discussed. The validity of this identification method is verified by comparing the identification results with the exact ones.  相似文献   

19.
In this paper, the finite element method is used to analyze the behaviour of repaired cracks in 2024‐T3 aluminum with bonded patches made of unidirectional composite plates. The problem is considered in Mode I condition. First the KI stress intensity factor (SIF) is calculated by the finite element method using displacement correlation technique. Different plate and patch thicknesses and crack lengths are considered in the analyses. Then an equation is determined by using genetic algorithms for the calculation of stress intensity factor without any further finite element analysis. The equation gives reasonably accurate results.  相似文献   

20.
In this paper, fatigue life of the repaired cracks in 2024-T 3 aluminum with bonded patches made of unidirectional composite plates has been investigated experimentally and numerically for hygrothermal effect. The problem is handled in plane stress and Mode I condition. In the experimental study the mechanical properties of the aluminum plate and patch materials are determined and fatigue experiments are conducted. The results obtained from these experiments and numerical solutions are compared. Thus the reliability of the numerical solution has been proven. For all conditions, numerical solutions have been made and stress intensity factor (KI) and fatigue life are calculated. Different plate and patch thicknesses are also considered in the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号