首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cocoa shell pellets were converted into activated carbon (CSAC) by carbonization at 800 °C followed by activation at 850 °C in CO2 flow until reaching burn off at approximately 48%. The CSAC was treated with hydrochloric acid (HCl) using response surface methodology (RSM), where the effect of soaking times (1, 2 and 4 h), temperatures (30, 50, 70 °C) and concentration of HCl (0.1, 1 and 2 M) were studied. CSAC treated with 1 M HCl at higher temperatures (>60 °C) yielded CSAC with low ash content (<10%). Acid-treatment process parameters, particularly the reaction temperature, determined the composition and types of functional groups existing in the CSAC. High concentrations of oxygen functional groups were detected in both untreated CSAC and CSAC treated at low acid concentration (1 M). High concentrations of nitrogen functional groups were detected only in CSAC treated at acid concentration (2 M).  相似文献   

2.
High surface area activated carbons were prepared by simple thermo-chemical activation of Jatropha curcas fruit shell with NaOH as a chemical activating agent. The effects of the preparation variables, which were impregnation ratio (NaOH:char), activation temperature and activation time, on the adsorption capacity of iodine and methylene blue solution were investigated. The activated carbon which had the highest iodine and methylene blue numbers was obtained by these conditions as follows: 4:1 (w/w) NaOH to char ratio, 800 °C activation temperature and 120 min activation time. Characterization of the activated carbon obtained was performed by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and nitrogen adsorption isotherm as BET. The results present that the activated carbon possesses a large apparent surface area (SBET = 1873 m2/g) and high total pore volume (1.312 cm3/g) with average pore size diameter of 28.0 Å.  相似文献   

3.
Jayshri A. Thote 《Carbon》2010,48(2):396-27
In situ nitrogen enriched carbon was synthesized from locally available low cost soybean as the proteinaceous source. The material was synthesized by chemical activation using zinc chloride followed by physical activation using CO2. The surface area of synthesized nitrogen enriched carbon was found to be 811 m2/g which is comparable with commercially available activated carbon. The nitrogen enriched carbon was having a breakthrough adsorption capacity of 23 mg/g at 120 °C which was almost three times higher in comparison with the commercially available activated carbon for a gas mixture comprising 15% CO2 balanced with helium. This high adsorption capacity was attributed to the presence of nitrogen group within the carbon matrix, which was estimated to be about 0.64% as determined using the Kjeldahl’s method. The presence of different nitrogen containing groups assisting the adsorption of CO2 in the synthesized sample was also confirmed by infrared analysis. For checking the consistent performance of the synthesized carbon, multi-cycle adsorption-desorption studies were carried out at 30 and 75 °C in binary mixture of CO2/N2.  相似文献   

4.
Potassium oxalate was evaluated as a new activating agent for preparation of kenaf core-based activated carbons. The preparation conditions were optimized through Box–Behnken design (BBD) to maximize I2 and methylene blue (MB) adsorption values. Two quadratic models were developed to correlate the preparation variables namely activation temperature, impregnation ratio and activation time for both responses. The activated carbon produced at the optimum combination of process parameters showed 1161 mg/g and 330 mg/g of I2 and MB uptakes, which were in excellent agreement with the predicted values from the models. Porosity parameters and scanning electron microscopy were used to investigate the obtained optimal sample. The results reveal that K2C2O4 could be recommended as a promising effective activating agent for producing activated carbons from kenaf core with high surface area and potentially desirable dye removal capacity.  相似文献   

5.
To prepare porous carbons with high adsorption capacity from rice straws, two different kinds of precursors, i.e. one as the raw rice straws (one-stage process) and the other as pre-carbonized rice straws (two-stage process), were activated with KOH of various impregnation ratios. The two-stage process was found very effective for manufacturing porous carbons with high surface area and adsorption capacities for MB and I2. For example, the porous carbon that was carbonized at 700°C and subsequently activated at 900°C exhibited the surface area of 2410 m2/g, the adsorption capacities of 800 and 1720 mg/g for MB and I2, respectively, and the total pore volume of 1.4 ml/g. In the two-stage method, there was a preferential optimum impregnation ratio of KOH to a precursor carbon, i.e. 4:1, with which high surface area of porous carbons could be achieved. The formation of uni- and bidentate carboxylic salt structure, induced by reaction between KOH and oxygen containing carbon, that facilitates the formation of azo group (-NN-) on a subsequent heat treatment was considered as one of the key factors for the presence of optimum impregnation ratio of KOH. In contrast, the porous carbons of only moderate adsorption capacity could be obtained from the one-stage method. The original morphology of rice straw was sustained during the two-stage process, yet not during the one-stage process.  相似文献   

6.
This work reports the application of an activated clay mineral as adsorbent for the removal of a basic dye, methylene blue (MB), from aqueous solutions. The thermal treatment at 300 °C for 2 h and the acid activation with nitric acid of 0.5 mol/dm3 under reflux conditions improve the adsorption capacity of the raw clay mineral. A maximum of 500 mg/g of MB at equilibrium is achieved. Equilibrium data are mathematically modelled using the Freundlich, Langmuir and Toth isotherm adsorption models.  相似文献   

7.
A new pathway to synthesize a carbon with both nanoporosity and pre-graphitic structures has been discovered by annealing at 2000 °C a CO2 activated, non-graphitizing, nanoporous carbon originally derived from polyfurfuryl alcohol. The activation process with CO2 overcomes the barrier to graphitization normally present in this carbon even when treated at high temperature. Gas adsorption analysis, skeletal density measurements, X-ray diffraction, and transmission electron microscopy are utilized to probe the structure of both the non-activated and the activated carbons at 800, 1200, 1800, and 2000 °C. The influence of activation time is also examined. Prior to activation the nanopore walls are comprised of several layers of disordered graphenes. Activation eliminates the barrier to graphitization by reducing the number of layers below the limit of detection and by removing carbon material highly susceptible to oxidation. Annealing at 2000 °C of the carbon activated to 84% burnoff induces the formation of pre-graphitic domains amongst the nanoporous carbon. The (0 0 2) bands corresponding to 2θ = 24.3°, 26°, and 26.5° are identified and assigned to amorphous, turbostratic, and graphitic morphologies. A pore volume of 0.50 cm3 g−1 localized in pores below 2 nm in size is preserved after annealing.  相似文献   

8.
The purpose of this study was to investigate the influence of the method of adsorption of N2 at − 196 °C on the isotherm obtained for, and hence derived textural parameters of, a wide series of carbonaceous materials (CM). Two pyrolyzed products, six activated carbons and two carbon blacks were used. The carbonized products were prepared by pyrolysis of cherry stones at 600 or 900 °C in nitrogen atmosphere (P-600, P-900). Three activated carbons were made by activation of P-600 at 275 °C in air and of P-900 at 850 °C in carbon dioxide or steam, whereas the remaining CM were commercial products. The adsorption isotherms for N2 at − 196 °C were determined by static and dynamic methods in Quantachrome equipments. The CM were further characterized texturally by means of mercury porosimetry and helium and mercury density measurements. Because of the presence of helium in the adsorptive gas stream, the adsorption of nitrogen noticeably decreases for the CM containing micropores obstructed with tarry products (i.e. P-600 and the activated carbon prepared from it by air activation). For the rest of the activated carbons the adsorption increases, as they must possess narrow micropores having easier access to N2 at − 196 °C. Helium causes a decrease in the degree of interaction between the nitrogen molecules in the gas stream and as a result the diffusion of nitrogen in pores of the adsorbent increases. For the carbon blacks, however, helium hardly affects the adsorption of nitrogen, except for at high relative pressures of this gas. Helium also influences the capillary condensation phenomenon occurring in mesopores. The variation percentages in the micro- and mesopore volumes are as high as 20 and 50, respectively. Such percentages as a rule are higher for the activated carbons.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) have been successfully coated with a thin SiCxOy coating when polycarbosilane (PCS) was used as precursor and pyrolyzed in a coke bed. Meanwhile, effect of PCS concentration on oxidation resistance of the coated MWCNTs is studied. The results showed that the pyrolysis products of PCS were composed of amorphous SiCxOy as the main phase, together with β-SiC and SiO2 as the minor phases whose amount increased a little with the increase of temperature from 1000 °C to 1500 °C. The thickness of SiCxOy coating on the surface of MWCNTs increased a little from 1 wt.% to 5 wt.%, but decreased dramatically with PCS concentration in the range of 10-30 wt.%. The oxidation resistance of the coated MWCNTs was greatly improved in comparison with as-received ones. The oxidation peak temperature of the coated MWCNTs reached 783.7 °C, much higher than 652.2 °C for as-received ones.  相似文献   

10.
Different fibrous activated carbons were prepared from natural precursors (jute and coconut fibers) by physical and chemical activation. Physical activation consisted of the thermal treatment of raw fibers at 950 °C in an inert atmosphere followed by an activation step with CO2 at the same temperature. In chemical activation, the raw fibers were impregnated in a solution of phosphoric acid and heated at 900 °C in an inert atmosphere. The characteristics of the fibrous activated carbons were determined in the following terms: elemental analysis, pore characteristics, SEM observation of the porous surface, and surface chemistry. As the objective of this study was the reuse of waste for industrial wastewater treatment, the adsorption properties of the activated carbons were tested towards pollutants representative of industrial effluents: phenol, the dye Acid Red 27 and Cu2+ ions. Chemical activation by phosphoric acid seems the most suitable process to produce fibrous activated carbon from cellulose fiber. This method leads to an interesting porosity (SBET up to 1500 m2 g−1), which enables a high adsorption capacity for micropollutants like phenol (reaching 181 mg g−1). Moreover, it produces numerous acidic surface groups, which are involved in the adsorption mechanisms of dyes and metal ions.  相似文献   

11.
《Carbon》2003,41(6):1181-1191
Synthetic activated carbons were prepared by phosphoric acid activation of a styrene-divinylbenzene copolymer in an air atmosphere at various temperatures in the 400-900 °C interval. The carbons were characterized by elemental analysis, cation-exchange capacity measurement, infrared spectroscopy, potentiometric titration, copper adsorption from solution and physical adsorption of N2 at −196 °C and CO2 at 0 °C. It was shown that, similarly to synthetic phosphoric acid activated carbons obtained in argon, the synthetic carbons activated with phosphoric acid in air possess an acidic character and show considerable cation-exchange properties. The contribution of oxygen-containing surface groups along with phosphorus-containing groups to CEC is higher for carbons obtained in air. Three types of surface groups were identified on carbons prepared at temperatures up to 600 °C, and four types on carbons prepared at higher temperatures. These groups were assigned to ‘super-acidic’ (pK<0), phosphorus-containing (pK=1.1-1.2), carboxylic (pK=4.7-6.0) and phenolic (pK=8.1-9.4) groups. The cation-exchange capacity was at a maximum for the carbon prepared at 800 °C. Copper adsorption by synthetic phosphoric acid activated carbons obtained in air at temperatures lower than 800 °C is higher than for similar carbons obtained in argon. The increase is due to additional formation of oxygen-containing surface groups. Calculated copper binding constants revealed the importance of phosphorus-containing and carboxylic groups for adsorption of copper from aqueous solution. All carbons show a multimodal pore size distribution including simultaneously micropores and mesopores, but the porous texture is not a prime factor in determining the cation-exchange capacities of these carbons. Synthetic phosphoric acid activated carbons show a greater development of porosity when obtained in air as compared to carbons carbonized in argon.  相似文献   

12.
Apparently C-doped and undoped or pure nanoparticles of anatase were synthesized using a microwave hydrothermal process in the temperature range of 140–180 °C for 1 h from several Ti precursors, such as Ti ethoxide, Ti isopropoxide and Ti oxysulfate. Nanoparticles of anatase samples were characterized by powder X-ray diffraction, transmission electron microscopy (TEM) and photocatalytic activity measurements. Results showed that nanoparticles in the size range of 4–17 nm of anatase were obtained in all cases with surface areas in the range of 151–267 m2/g. The photocatalytic activity of the prepared titanias was measured using methylene blue (MB) and NOx molecules. Because MB has very strong adsorption on the samples, photocatalytic degradation under either solar light or black light irradiation was found to be very limited. However, the DeNOx abilities of carbon-doped titanias were higher than those of Degussa P25 commercial titania sample and undoped or pure titanias especially under irradiation by long wavelength or visible light (>500 nm).  相似文献   

13.
Alar Jänes  Heisi Kurig  Enn Lust 《Carbon》2007,45(6):1226-1233
Commercial nanoporous carbon RP-20 was activated with water vapor in the temperature range from 950 °C to 1150 °C. The XRD analysis was carried out on nanoporous carbon powder samples to investigate the structural changes (graphitisation) in modified carbon that occurred at activation temperatures T ? 1150 °C. The first-order Raman spectra showed the absorption peak at 1582 cm−1 and the disorder (D) peak at 1350 cm−1. The low-temperature N2 adsorption experiments were performed at −196 °C and a specific surface area up to 2240 m2g−1 for carbon activated at T = 1050 °C was measured. The cell capacitance for two electrode activated nanoporous carbon system advanced up to 60 F g−1 giving the specific capacitance ∼240 F g−1 to one electrode nanoporous carbon ∣1.2 M (C2H5)3CH3NBF4 + acetonitrile solution interface. A very wide region of ideal polarisability for two electrode system (∼3.2 V) was achieved. The low frequency limiting specific capacitance very weakly increases with the rise of specific area explained by the mass transfer limitations in the nanoporous carbon electrodes. The electrochemical characteristics obtained show that some of these materials under discussion can be used for compilation of high energy density and power density non-aqueous electrolyte supercapacitors with higher power densities than aqueous supercapacitors.  相似文献   

14.
Different activated carbons with large micropore volume (0.78-0.99 cm3/g) have been prepared by KOH activation of mesophase pitch obtained by co-pyrolysis of a petroleum residue and small amounts of different compounds, triphenylsilane, borane pyridine complex, tetrabutyl orthotitanate or ferrocene. During the preparation, the Ti introduced in the petroleum residue concentrate into the activated carbon, whereas some loss of Si and Fe occurs. The compounds modify the size of mesophase structure formed during the co-pyrolysis process, as well as the apparent height of lamelae stack, Lc, both having an important effect in the development of the porosity of the activated carbon. However, there is a scarce influence of all heteroatoms in the adsorption capacity of H2 at −196 °C and at 25 °C, which seems to be mainly influenced by the volume and size of micropores of the activated carbon. Only the activated carbon containing Fe adsorbs a higher amount of hydrogen at 25 °C and 10 MPa than the expected one according to its micropore volume.  相似文献   

15.
Ying Qi  Andrew F.A. Hoadley 《Fuel》2011,90(4):1567-1574
An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity.  相似文献   

16.
Yahia A. Alhamed 《Fuel》2009,88(1):87-14104
Samples of granular activated carbon (GAC) were produced from dates’ stones by chemical activation using ZnCl2 as an activator. Textural characteristics of GAC were determined by nitrogen adsorption at 77 K along with application of BET equation (Brunauer, Emmett and Teller) for determination of surface area. Pore size distribution and pore volumes were computed from N2 adsorption data by applying the nonlinear density function theory (NLDFT). FT-IR spectra of GAC samples were also obtained to determine the functional groups present on the surface. GAC samples were used in desulfurization of a model diesel fuel composed of n-C10H34 and dibenzothiophene (DBT) as sulfur containing compound. More than 86% of DBT is adsorbed in the first 3 h which gradually increases to 92.6% in 48 h and no more sulfur is removed thereafter. The adsorption data were fitted to both Freundlich and Langmuir equations to estimate the adsorption parameters. The optimum operating conditions for GAC preparation based on high adsorption capacity are Tcarb = 700 °C, θcarb = 3.0 h and R = 0.5. Moreover, the efficiency of sulfur removal by GAC is reduced when applied to commercial diesel fuel. Finally, linear regression of experimental data was able to predict the critical pore diameter for DBT adsorption (0.8 nm) and validating the reported impact of average pore diameter of activated carbon on the adsorption capacity.  相似文献   

17.
The adsorption ability for vapor-phase Hg° on commercially available granular activated carbon (AC) loaded with CuCoO4 (AC–C), CuCoO+ NH4Cl (AC–Cl), and CuCoO+ NH4Br (AC–Br) were investigated in an attempt to produce more economic and effective sorbents for the control of Hgo emission from combustion processes. According to the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and mass balance analysis on mercury, we found that N-doped AC–C had bigger SBET and the nitrogen doping greatly improved CuCoO4 Hgo oxidation ability. It was considered that nitrogen atoms in doped CuCoO4 polycrystalline and anion Cl/Br- activated by AC and N-doped CuCoO4 were responsible for the significant enhancement in Hgo oxidation ability of AC–Cl and AC–Br. We explored the Hgo oxidation ability of the three kinds of materials under various loading values and adsorption temperatures. We found that AC–Cl and AC–Br were more sensitive to loading value and had much higher Hgo oxidation ability than AC–C over a wide range temperature. The longevities of AC–C, AC–Cl and AC–Br were all less than the corresponding Al2O3 carrier material due to CuCoO4 decomposition effect on AC, which destroyed the porous structure of AC. The effect of 0.31 vol.% SO2 on the Hgo oxidation ability of AC–C, AC–Cl and AC–Br was insignificant which indicated that N-doping did not adversely affect Co3+ and Cu2+-octahedral structure.  相似文献   

18.
Microwave ceramics of Ba4(Nd0.7Sm0.3)9.33Ti18O54 with 0–3 wt% Ag additions were synthesized by a citrate sol–gel method. The BaO–B2O3–SiO2 glass was also added into the sol–gel derived BNST ceramic powders as sintering aids. The undoped, Ag- and BaBS-doped samples can be sintered at 1250 °C, 1150 °C and 1000 °C, respectively. The microstructure and dielectric properties were then controlled by doping Ag or BaBS glass. Near isoaxial grains with about 250 nm and typical columnar grains were obtained for the silver-doped and BaBS-doped samples, respectively. For the <1 wt% silver-doped samples, the dielectric constant and Q × f retained unaltered but τf decreased from 9 ppm/°C to 1.4 ppm/°C. With increasing silver content from 1 wt% to 3 wt%, the dielectric constant and τf significantly increased but Q × f decreased. For the BaBS-doped samples, both dielectric constant and Q × f decreased but τf increased with increasing BaBS content.  相似文献   

19.
Activated carbons were produced from waste tires and their characteristics were investigated. Rubber separated from waste tires was first carbonized at 500 °C in N2 atmosphere. Next, the obtained chars were activated with steam at 850 °C. As a result, fairly mesoporous activated carbons with mesopore volumes and BET surface areas up to 1.09 cm3/g and 737 m2/g, respectively, were obtained. To further improve the porous properties of the activated carbons, the char was treated with 1 M HCl at room temperature for 1 day prior to steam activation. This treatment increased mesopore volumes and BET surface areas of the activated carbons up to 1.62 cm3/g and 1119 m2/g, respectively. Furthermore, adsorption characteristics of phenol and a dye, Black 5, on the activated carbon prepared via acid treatment were compared with those of a commercial activated carbon in the liquid phase. Although the prepared carbon had a larger micropore volume than the commercial carbon, it showed a slightly lower phenol adsorption capacity. On the other hand, the prepared carbon showed an obviously larger dye adsorption capacity than the commercial carbon, because of its larger mesopore volume.  相似文献   

20.
B.R. Stanmore  J.-F. Brilhac 《Fuel》2008,87(2):131-146
The reactions reviewed here concern those between elemental carbon and NO2, N2O and NO, sometimes in the presence of oxygen. The section on NO includes only updates to recent reviews. Soots, activated carbons and carbon blacks are more reactive than graphite. The magnitudes of the reaction rates are found to be: NO2 > N2O ≈ NO ≈ O2. The presence of a soluble organic fraction (SOF) in soot is found to influence some reactions, and all three reactions suffer from inhibition by surface products. The mechanisms proposed for the surface adsorbates are summarised. All authors found that two types of active site were present; one forming weak bonds (physisorption), and the other undergoing chemisorption to form groupings such as -C-ONO, -C-ONO2 or -C-NO2. The latter decompose to give oxides of carbon, and are sometimes called redox reactions. The adsorbates appear to be the same for all NOx species. Some elemental nitrogen adsorption takes place, and can involve incorporation into the C skeleton. The attack of NO on carbon proceeds via NO2, so that catalysts that facilitate this oxidation are effective. Gaseous SO2 and H2O assist in the process by forming acids which are good oxidants. The change in activation energy with temperature found experimentally for NO and N2O may be due to the form of nitrogen on the edge carbon atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号