首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(5):592-603
In this paper, a new polydimethylsiloxane (PDMS) membrane was synthesized and its ability for separation of heavier gases from lighter ones was examined. Sorption, diffusion, and permeation of H2, N2, O2, CH4, CO2, and C3H8 in the synthesized membrane were investigated as a function of pressure at 35°C. PDMS was confirmed to be more permeable to more condensable gases such as C3H8. This result was attributed to very high solubility of larger gas molecules in hydrocarbon?based PDMS in spite of their low diffusion coefficients relative to small molecules. The synthesized membrane showed much better gas permeation performance than others reported in the literature. Increasing upstream pressure increased solubility, permeability and diffusion coefficients of C3H8, while these values decreased slightly or stayed constant for other gases. Local effective diffusion coefficient of C3H8 and CO2 increased with increasing penetrant concentration which indicated plasticization effect of these gases over the range of penetrant concentration studied. C3H8/gas solubility, diffusivity and overall selectivities also increased with increasing feed pressure. Ideal selectivity values of 4, 13, 18, 20, and 36 for C3H8 over CO2, CH4, H2, O2, and N2, respectively, at upstream pressure of 7 atm, confirmed the outstanding separation performance of the synthesized mebrane.  相似文献   

2.
Sorption, diffusion, and permeation of three olefins (i.e., C2H4, C3H6, and C4H8) in poly(ether block amide) (PEBA 2533) membranes at different temperatures and pressures were investigated. This is pertinent to olefin recovery from resin off gas in polyolefin manufacturing. The relative contribution of solubility and diffusivity to the preferential permeability of olefins over nitrogen was elucidated. It was revealed that the favorable olefin/nitrogen permselectivity was primarily attributed to the solubility selectivity, whereas the diffusivity selectivity may affect the permselectivity negatively or positively, depending on the operating temperature and pressure. The olefin permeability is in the order of C4H8>C3H6>C2H4, the same order as their solubility in the membrane. In general, a low temperature favors both the permeability and selectivity. With an increase in pressure and/or a decrease in temperature, the sorption uptake of the olefin in the membrane increases progressively, and the diffusivity and hence the permeability are also enhanced because of the increased membrane plasticization/swelling caused by the penetrant sorbed in the membrane. At a given temperature, the pressure dependence of solubility and permeability could be described empirically by an exponential function. The limiting solubility at infinite dilution was correlated with the reduced temperature, and the hypothetical diffusivity at zero pressure was related to temperature by the Arrhenius equation.  相似文献   

3.
This study presents a new mathematical model to investigate the ternary gas mixture permeation across a synthesized composite PDMS/PA membrane. A novel algorithm is introduced for direct determination of diffusion coefficients. It pertains to study gas permeation through concentration dependent systems and comparing with traditional time lag method confirms the precision of this approach. Feature is that this method does not require physical properties of the membrane. Accordingly, it can be used as a general comprehensive model. In addition, molecular pair and molecular trio interactions were taken into account and in order to investigate the deviation of gas mixture from ideality, fugacities were calculated. The results showed that permeabilites of H2 and CH4 increase with increasing feed temperature and fugacity, while that of C3H8 decreases. Moreover, increasing C3H8 concentration improved permeation properties of all components. The results demonstrated that considering the concentration dependent system (CDS) leads to the small deviation of about less than 10%, while the deviation of 50–100% by the concentration independent system (CIS) was acquired. Additionally the results indicated that permeability of the lighter gases is specially affected by diffusivity, while solubility is dominant on permeability of the heavier gases.  相似文献   

4.
In this work, a new polydimethylsiloxane (PDMS) membrane was synthesized and its sorption, diffusion, and permeation properties were investigated using H2, N2, O2, CH4, CO2, and C3H8 as a function of pressure at 35°C. PDMS, as a rubbery membrane, was confirmed to be more permeable to more condensable gases such as C3H8. The synthesized PDMS membrane showed much better gas permeation performance than others reported in the literature. Based on the sorption data of this study and other researchers' works, some valuable parameters such as Flory‐Huggins (FH) interaction parameters, χ, etc., were calculated and discussed. The concentration‐averaged FH interaction parameters of H2, N2, O2, CH4, CO2, and C3H8 in the synthesized PDMS membrane were estimated to be 2.196, 0.678, 0.165, 0.139, 0.418, and 0.247, respectively. Chemical similarity of O2, CH4, and C3H8 with backbone structure of PDMS led to lower χ values or more favorable interactions with polymer matrix, particularly for CH4. Regular solution theory was applied to verify correctness of evaluated interaction parameters. Local effective diffusion coefficient of C3H8 and CO2 increased with increasing penetrant concentration, which indicated the plasticization effect of these gases over the range of penetrant concentration studied. According to high C3H8/gas ideal selectivity values, the synthesized PDMS membrane is recommended as an efficient membrane for the separation of organic vapors from noncondensable gases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The permeations of pure CO2 and N2 gases and a binary gas mixture of CO2/N2 (20/80) through poly(dimethylsiloxane) (PDMS) membrane were carried out by the new permeation apparatus. The permeation and separation behaviors were characterized in terms of transport parameters, namely, permeability, diffusion, and solubility coefficients which were precisely determined by the continuous‐flow technique. In the permeation of the pure gases, feed pressure and temperature affected the solubility coefficients of CO2 and N2 in opposite ways, respectively; increasing feed pressure positively affects CO2 solubility coefficient and negatively affects N2 solubility coefficient, whereas increasing temperature favors only N2 sorption. In the permeation of the mixed gas, mass transport was observed to be affected mainly by the coupling in sorption, and the coupling was analyzed by a newly defined parameter permeation ratio. The coupling effects have been investigated on the permeation and separation behaviors in the permeation of the mixed gas varying temperature and feed pressure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 179–189, 2000  相似文献   

6.
This study investigates the effect of trimethylsiloxy fumed silica (TFS) on the mechanical and gas permeation properties of polymer nano-composite membranes. The membranes were produced by coating TFS incorporated polydimethylsiloxane (PDMS) at different loadings (5, 10 and 15 wt.%) on a porous low density polyethylene (LDPE) substrate which was formed by a melt-extrusion/salt leaching technique. The PDMS-TFS/LDPE membranes were characterized by SEM, TGA and DMTA. The results showed that good affinity between the PDMS treated TFS particles and PDMS matrix was obtained leading to improved mechanical and thermal properties. For gas permeation, CH4 and C3H8 at different upstream pressure (50 to 80 psig) and temperature (27 to 55 °C) were investigated. The results showed that the C3H8/CH4 ideal selectivity (17.6) and C3H8 permeability (1.89?×?104 Barrer) through 10 wt.% TFS loaded membranes (PDMS-TFS10%/LDPE) were 41 and 14% higher than the neat membranes (PDMS-TFS0%/LDPE), respectively. The permeation results also indicate that the performance stability under the conditions investigated makes PDMS-TFS/LDPE membranes interesting for industrial applications.  相似文献   

7.
A rigorous model for hydrogen permeation through dense mixed conductors was derived using the formalism of non-equilibrium thermodynamics for various operating modes and process conditions. The concentrations of charge carriers were rigorously included in this model through defect equilibria with the chemical environment at each membrane surface and through balance equations and a virtual pressure formalism within the membrane. Hydrogen permeation rates through proton-electron-hole mixed conductors were simulated using this framework under open-circuit, short-circuited, and applied potential operating modes. The sensitivity of H2 permeation rates to the reduction-oxidation potentials at each side of the membrane and to the membrane properties (e.g. electron/hole diffusivity, oxygen binding energy) was examined in terms of the mobility and concentration of each charge carrier in order to identify rate-limiting steps for H2 transport. These simulations showed that electronic transport controls H2 permeation rates in proton-electron-hole mixed conductors typically used for H2 permeation, especially when hydrogen chemical potentials are significantly different in the two sides of the membrane. These electronic conduction limitations arise from a region of very low electronic conductivity within the membrane, caused by a shift in the predominant charge carriers from electron to holes with decreasing hydrogen chemical potential. Under these asymmetrical conditions, H2 permeation rates increase more markedly when an external electron-conducting path is introduced than at lower chemical potential gradients. Such interplay between rate-controlling variables leads to complex effects of H2 chemical potential gradients on permeation rates. The effects of intrinsic membrane properties on H2 permeation were examined by systematic changes in the defect equilibrium constants. A decrease in oxygen binding energy, manifested in a stronger tendency for reduction of the oxide membrane material, leads to higher electron concentrations and to higher rates for open-circuit operation, during which electron conduction limits H2 transport rates.  相似文献   

8.
Elastomers based on polydimethylsiloxane (PDMS) are used as insulating material in outdoor electrical power applications. It is believed that migration of small molecule PDMS species plays an important role in the recovery of hydrophobicity of oxidized or polluted PDMS elastomer surfaces. This paper reports data on diffusivity and solubility of low molar mass PDMS liquids in PDMS rubbers (8000 < M c < 16,000 g/mol) obtained by sorption measurements. It was found that the diffusivity (D) of linear PDMS liquids was approximately independent of the concentration of penetrant and that in the molar mass range 400 < M c < 18,000 g/mol it decreased with molar mass (M c) of the diffusing liquid according to D α M c−0.8. Theory and previous data for other oligomers and elastomers predict that D is proportional to M−1. Linear PDMS liquids of lower molar mass exhibited a stronger molar mass dependence. The diffusivity of a given PDMS liquid increased with increasing elastomer crosslink density. The activation energy of the diffusivity was constant at 15.5 ± 2 kJ/mol for linear PDMS liquids of M c larger than 1000 g/mol−1 with only a negligible influence of network density and filler content. The activation energy of the lowest molar mass penetrant was considerably lower, 6 to 7 kJ/mol. The solubility increased markedly with decreasing molar mass of the penetrant and with decreasing elastomer crosslink density.  相似文献   

9.
In this study, a predictive model for the separation of gases via a polydimethylsiloxane (PDMS) membrane has been developed. This model takes into account the effects of gas composition and pressure at the membrane surfaces on the gas sorption and diffusion coefficients in the membrane. Computational fluid dynamics (CFD) modeling has been employed in order to predict the behavior of a gas mixture containing C3H8, CH4, and H2 at various operating conditions and three zones (upstream, downstream, and membrane body). Artificial neural network (ANN) modeling has been applied to predict sorption and diffusion coefficients of each component of the gas mixture in the membrane. A procedure of calculation has been applied to combine the CFD modeling and the ANN modeling in order to predict sorption, diffusion, and composition of each component at various sites of the membrane. The results determined using the developed prediction model have been found to be in agreement with those determined using experimental investigations with an average error of 10.21%. POLYM. ENG. SCI., 54:215–226, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Roy D. Raharjo  Donald R. Paul 《Polymer》2007,48(25):7329-7344
Pure and mixed gas n-C4H10 and CH4 permeability coefficients in poly(1-trimethylsilyl-1-propyne) (PTMSP) are reported at temperatures from −20 to 35 °C. CH4 partial pressures range from 1.1 to 14.6 atm, and n-C4H10 partial pressures range from 0.02 to 1.8 atm. CH4 permeability decreases with increasing n-C4H10 upstream activity (f/fsat) in the feed. For example, at −20 °C, CH4 permeability decreases by more than an order of magnitude, from 52,000 to 1700 Barrer, as n-C4H10 activity increases from 0 to 0.73. In contrast, n-C4H10 mixed gas permeability is essentially unaffected by the presence of CH4. The depression of CH4 permeability in mixtures is a result of competitive sorption and blocking effects, which reduce both CH4 mixture solubility and diffusivity, respectively. Diffusion coefficients of n-C4H10 and CH4 in mixtures were calculated from mixture permeability and mixture solubility data. The CH4 concentration-averaged diffusion coefficient generally decreases as n-C4H10 activity increases. On the other hand, the n-C4H10 diffusion coefficient is essentially unaffected by the presence of CH4. Pure and mixed gas activation energies of permeation and diffusion of CH4 and n-C4H10 are reported. The mixed gas n-C4H10/CH4 permeability selectivity increases with increasing n-C4H10 activity and decreasing temperature, and it is higher than pure gas estimates would suggest. Mixture diffusivity selectivity also increases with increasing n-C4H10 activity. The difference between pure and mixed gas permeability selectivity arises from both solubility and diffusivity effects. The dual mode mixed gas permeability model describes the mixture permeability data reasonably well for n-C4H10. However, the model must be modified to accurately describe the methane data by accounting for the decrease in methane diffusivity due to the presence of n-C4H10 (i.e., blocking). Even though the penetrant concentrations are rather significant at some of the conditions considered, no evidence is observed for phenomena such as multicomponent coupling that would require a model more complex than the binary form of Fick's law. That is, Fick's law in its simplest form adequately describes the experimental data.  相似文献   

11.
Pure and mixed gas n-C4H10 and CH4 sorption and dilation in poly(1-trimethylsilyl-1-propyne) (PTMSP) are reported at temperatures ranging from −20 to 35 °C. The presence of n-C4H10 in the mixture considerably reduces CH4 solubility. For example, CH4 solubility (in the limit of zero CH4 fugacity) at 25°C decreases from 4.0 (pure gas) to 0.78 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.60. At −20 °C, CH4 solubility decreases by almost an order of magnitude, from 10.2 (pure gas) to 1.22 cm3(STP)/(cm3 polymer atm) in the presence of n-C4H10 at an activity of 0.61. In contrast, n-C4H10 mixture sorption properties are not measurably affected by the presence of CH4. The dual mode sorption model parameters for CH4 and n-C4H10 in PTMSP were determined from pure and mixed gas sorption measurements, and this model can adequately describe the sorption data. The n-C4H10/CH4 mixed gas solubility selectivity in PTMSP decreases as temperature increases and as n-C4H10 activity increases. For example, at 25 °C, the n-C4H10/CH4 solubility selectivity decreases from 250 to 120 as n-C4H10 activity increases from 0.02 to 0.25. At −20 °C and an n-C4H10 activity of 0.24, the n-C4H10/CH4 solubility selectivity is 590. Penetrant-induced volume dilation of PTMSP can be adequately modeled by assuming that all swelling is caused by penetrant molecules sorbed in the polymer's dense equilibrium region (i.e., the Henry's law region) during sorption. However, the best fit partial molar volumes in the Henry's law region for the dilation data are considerably lower than the penetrant partial molar volumes in liquids, suggesting that further theoretical efforts are needed to develop predictive models of volume dilation in high free volume glassy polymers.  相似文献   

12.
Poly(dimethylsiloxane) (PDMS)/clay nanocomposites have been synthesized using a novel ω-ammonium functionalized oligo-PDMS surfactant (PDMS-N+(CH3)3) and processed in membrane form. In order to relate the clay morphological structure to the degree of dispersion and physical properties of the membrane, the clay ion-exchanged by PDMS-N+(CH3)3 has been compared to a non-exchanged sodium MMT and to two organoclays organo-modified by using either non-functional alkyl ammonium cations (C38H80N+) or hydroxyalkyl ammonium (C22H48ON+) cations. Morphological analysis and transport properties (sorption, diffusion and permeability) have been investigated using two penetrants: acetone and n-hexane. The mechanical and rheological properties of the PDMS nanocomposite membranes have also been studied. It has been found a significant effect of the clay organo-modifier on the morphology, physical and barrier properties of the systems.  相似文献   

13.
The possibility of removing H2S from natural gas by applying a pressure swing sorption (PSS) process was experimentally proven. The key technique of the PSS process relies on using a special type of sorbent where solid grains were coated by a layer of liquid. It was shown that the solubility of H2S in the layer of liquid enlarged the concentration of H2S at the solid surface and, hence enhanced the adsorption of H2S on adsorbent. The solubility of H2S is very sensitive to the partial pressure above the layer of liquid, therefore, the saturated sorbent could be easily regenerated by sweeping the bed of sorbent with nitrogen at ambient temperature and pressure. The sorption capacity as well as the coated sorbent was stable during the operation cycles of sorption/desorption. The new PSS technology of sweetening natural gas is advantageous over the prevailing technologies of today in that both savings of investment and energy cost could be expected.  相似文献   

14.
In a recent study, a two‐dimensional solubility parameter model was used to correlate the heat of solution for solutes ranging from n‐alkanes to alcohols, dissolved in isotatic polypropylene (PP), poly(ethyl ethylene) (PEE), and poly(dimethylsiloxane) (PDMS). When literature data of solubility parameter components of solutes were used, the correlation had some scattering for solutes with low values of cohesive energy density. In this study, the components of solubility parameters of solutes and polymers were estimated from cohesive energy and heat of sorption of solutes. Good correlation was obtained for the specific heat of sorption (ΔUsorp/V) for solutes ranging from n‐alkanes to alcohols, and PDMS had a polar component as previously estimated. Free volume effect in solution process may be the source of a small systematic deviation from the model. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
H2 and CO permeabilities through H3PMo12O40-blended polyvinylalcohol membrane and catalyst-free polyvinylalcohol membrane were measured. The blended membrane showed better selectivity and higher permeation flux of H2 than the catalyst-free polyvinylalcohol membrane. Its enhanced H2 separation ability was mainly due to the selective sorption property of PMo embedded in the polyvinylalcohol membrane.  相似文献   

16.
A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated using both pure and mixed N2/CH4 permeation tests. The effects of final pyrolysis temperature on N2/CH4 separation are reported. The separation performance of all CMS dense films significantly exceeds the polymer precursor dense film. The CMS dense film pyrolyzed at 800 °C shows very attractive separation performance that surpasses the polymer membrane upper bound line, with N2 permeability of 6.8 Barrers and N2/CH4 permselectivity of 7.7 from pure gas permeation, and N2 permeability of 5.2 Barrers and N2/CH4 permselectivity of 6.0 from mixed gas permeation. The temperature dependences of permeabilities, sorption coefficients, and diffusion coefficients of the membrane were studied, and the activation energy for permeation and diffusion, as well as the apparent heats of sorption are reported. The high permselectivity of this dense film is shown to arise from a significant entropic contribution in the diffusion selectivity. The study shows that the rigid ‘slit-shaped’ CMS pore structure can enable a strong molecular sieving effect to effectively distinguish the size and shape difference between N2 and CH4.  相似文献   

17.
Pervaporation (PV) of methanol/water and ethanol/water mixtures through PDMS membrane was investigated using a PV cell (in laboratory scale). PDMS membrane is a well-known hydrophobic membrane for removing organics from aqueous mixtures. Experimental results were obtained at different initial alcohol (methanol and ethanol) concentrations (0.3-3 wt%) and temperatures (30-). Recirculation flow rate was kept constant at a value of 15.6 l/h. Average permeation flux (j), separation factor (α) and activation energy of permeation (EP) were calculated. Separation factor of PDMS membrane for methanol was greater than that for ethanol. Total flux for methanol/water and ethanol/water mixtures was observed to vary from 0.37 to 0.56 and 0.52 to 0.90 at , respectively, as alcohol concentration changed from 0.3 to 3 wt%. Separation of alcohols depends on both their selective sorption in polymeric membrane and their diffusivity. The most important observation was that separation factor of methanol/water mixtures is greater than that of ethanol/water mixtures and it is because of different molecular size of alcohols. Different behavior of alcohol/water mixtures can also be explained in the entire concentration range studied using relative values of solubility parameters of the alcohols. It can be due to the fact that activation energy of alcohol permeation increases as solubility parameter difference between alcohol and membrane increases.  相似文献   

18.
Solubility and diffusivity of supercritical CO2 in poly(l-lactide)-hydroxyapatite (PLLA-HA) and poly(d,l-lactide-co-glycolide)-hydroxyapatite (PLGA-HA) composite materials were measured using a magnetic suspension balance at a temperature of 313 K and a pressures range of 10-30 MPa. The effect of the HA concentration on the solubility and diffusivity was investigated by varying filler content in the range of 0-50 wt%. For the PLLA-HA composites the solubility decreases with the increase of filler concentration. Diffusivity of the gas in the substrate is also lower as the HA content increases. In the case of PLGA-HA composites, small filler content favors the solubility and diffusivity of CO2 due to incomplete wetting of the solid particles by the polymer. As the amount of HA increases solubility decreases. The results suggest that dense CO2 could be used as a ‘green’ processing agent for composite biomaterials when organic solvents or high temperatures should be avoided.  相似文献   

19.
Decomposition of steam under a chemical driving force at moderate temperatures offers a simple and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing the oxygen using Gd0.2Ce0.8O1.9−δ (GDC)–Gd0.08Sr0.88Ti0.95Al0.05Oδ (GSTA) mixed oxygen ionic and electronic conducting membranes. Hydrogen generation experiments for the self-supported thick membranes and porous supported thin membranes were conducted at different oxygen partial pressure gradients across the membrane established using H2–H2O mixture gas. Experimental results indicate that the hydrogen generation from steam using GDC–GSTA MIEC membranes at elevated temperatures is mainly controlled by the bulk diffusion of oxygen for the self-supported thick membranes, while the permeation process for the porous supported thin membranes is mixed controlled, i.e. the hydrogen generation/oxygen permeation process is controlled by the surface exchange reactions and bulk diffusion of oxygen through the MIEC membrane. A mathematical model for the calculation of the area specific hydrogen generation rate is proposed in this paper based on the measured oxygen partial pressures, gas compositions, and gas flow rates of the inlet and outlet gases on feed side of the membrane, as well as the permeation area of the membrane.  相似文献   

20.
The mass transport of components during the pervaporation of binary butanol aqueous solutions using commercial PDMS membranes has been investigated. A simplified approach of the Maxwell–Stefan model was extended to include the effect of membrane swelling and temperature on the diffusion coefficients and sorption properties. Partial permeate fluxes obtained at different temperatures and concentrations have been fitted to determine the extended model parameters. The sorption properties and diffusion coefficients of components have been estimated using fitted parameters. Predicted values of the solubility and diffusivity were used to calculate and compare the permeability of the components under different operating conditions.

Abbreviations: HPLC - High performance liquid chromatography; MS - Maxwell–Stefan; PDMS - Polydimethylsiloxane; SEM - Scanning electron microscope  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号