首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yield stress‐pH and zeta potential‐pH behaviour of α‐alumina and zirconia dispersions with adsorbed small ionic molecular additives such as phosphate and pyrophosphate were determined. The result for adsorbed citrate was included for comparison. Adsorbed phosphate at high surface coverage increased the maximum yield stress of low surface area α‐Al2O3 (AKP30 and AA07) dispersions slightly. This increase is attributed to the intermolecular hydrogen bonding between phosphates adsorbed on interacting particles. With high surface area ZrO2 (Tosoh) dispersions, however, the adsorbed phosphate decreased the maximum yield stress. This is due to its very rough surface morphology limiting the extent of intermolecular hydrogen bonding between adsorbed phosphate layers. Unlike phosphate, pyrophosphate reduces the maximum yield stress of AKP30 α‐Al2O3. This is due to the presence of intramolecular hydrogen bonding, thereby impeding effective bridging. A similar result is observed with citrate. The adsorbed pyrophosphate acts as an effective steric barrier keeping interacting particles further apart, thereby weakening the van de Waals attraction. These dispersions with the presence of non‐DLVO forces, that is bridging and steric, did not affect the linear relationship between yield stress and the square of the zeta potential as predicted by the yield stress–DLVO force model. However the relative importance of these non‐DLVO forces affect the value of the critical zeta potential at the point of transition from flocculated to dispersed state. © 2011 Canadian Society for Chemical Engineering  相似文献   

2.
Kaolinite clays from two sources were found to display different rheological and electrokinetic behaviour despite having similar mineral composition. This difference is mainly due to the surface chemistry at the edges of the clay particles. Making the edge surface chemistry similar with an adsorbed small anionic additive such as citrate, produced a similar yield stress-pH behaviour for the different kaolin clay slurries. Heterogeneous attraction between positively charged edges and negatively charged faces of the clay particles is responsible for the yield stress behaviour of the clay slurry. However, the different points of zero charge of the edge caused the clay slurries to display different yield stress-pH behaviour. Adsorption of anionic citrate on negatively charged kaolin clay particles is reflected in a significant increase in the magnitude of the negative zeta potential. The adsorption is likely to be on the edge of the clay particles. Adsorbed citrate generally reduces or eliminates heterogeneous charge attraction leading to a much denser sediment being formed in the kaolin slurries with a coarser particle size distribution.  相似文献   

3.
During optical glass polishing, a number of interactions between the workpiece (i.e., glass), polishing slurry, and pad can influence the resulting workpiece roughness at different spatial scale lengths. In our previous studies, the particle size distribution of the slurry, the pad topography, and the amount of material removed by a single particle on the workpiece were shown to strongly correlate with roughness at AFM scale lengths (nm‐μm) and weakly at μ‐roughness scale lengths (μm‐mm). In this study, the polishing slurry pH and the generation of glass removal products are shown to influence the slurry particle spatial and height distribution at the polishing interface and the resulting μ‐roughness of the glass workpiece. A series of fused silica and phosphate glass samples were polished with various ceria and colloidal silica slurries over a range of slurry pH, and the resulting AFM roughness and μ‐roughness were measured. The AFM roughness was largely invariant with pH, suggesting that the removal function of a single particle is unchanged with pH. However, the μ‐roughness changed significantly, increasing linearly with pH for phosphate glass and having a maximum at an intermediate pH for fused silica. In addition, the spatial and height distribution of slurry particles on the pad (as measured by laser confocal microscopy) was determined to be distinctly different at low and high pH during phosphate glass polishing. Also, the zeta potential as a function of pH was measured for the workpiece, slurry, and pad with and without surrogate glass products (K3PO4 for phosphate glass and Si(OH)4 for silica) to assess the role of interfacial charge during polishing. The addition of K3PO4 significantly raised the zeta potential, whereas addition of Si(OH)4 had little effect on the zeta potential. An electrostatic DLVO three‐body force model, using the measured zeta potentials, was used to calculate the particle–particle, particle–workpiece, and particle–pad attractive and repulsive forces as a function of pH and the incorporation of glass products at the interface. The model predicted an increase in particle–pad attraction with an increase in pH and phosphate glass products consistent with the measured slurry distribution on the pads during phosphate glass polishing. Finally, a slurry “island” distribution gap (IDG) model has been formulated which utilizes the measured interface slurry distributions and a load balance to determine the interface gap, the contact area fraction, and the load on each slurry “island”. The IDG model was then used to simulate the workpiece surface topography and μ‐roughness; the results show an increase in roughness with pH similar to that observed experimentally.  相似文献   

4.
PEI was used as dispersant for ZrB2 and SiC powders in water. The dispersion behavior of ZrB2 and SiC in water was studied by zeta potential measurements, particle size distribution measurements and interparticle interaction calculations. Well-dispersed ZrB2 and SiC aqueous suspensions were obtained using 0.6 wt% PEI at pH 6. The rheological behavior of ZrB2–SiC aqueous suspensions was also investigated. Finally, a high solid loading (52 vol%), low viscosity (980 mPa s at 100 s−1) ZrB2–SiC aqueous suspension was successfully prepared.  相似文献   

5.
The dispersion behavior and densification of nano Si–(Al)–C powder with amorphous/nanocrystalline bimodal microstructure were investigated. The Si–C powders synthesized by a mechanical alloying (MA) process had a near‐spherical shape with an average particle size of 170 nm. A solid loading of 62 vol% was achieved using polyethyleneimine (PEI) as a dispersant. The optimum dispersant amount was 1 wt% based on zeta potential, sedimentation, and viscosity analysis data. The high zeta potential value (73 mV) compared with that of the commercially available SiC (65 mV) was caused by modified surface properties and consequent promotion of the cationic dispersant adsorption. A Si–Al–C slurry containing 6.5 wt% of sintering additives with a solid loading of 60 vol% was also prepared. The relative density of the dried Si–Al–C slurry was 63.3% without additional compaction, which could be densified at 1650°C at a pressure of 20 MPa using a spark plasma sintering furnace.  相似文献   

6.
Electrokinetic properties of methacrylic acid- and acrylonitrile-grafted polypropylene fibers measured in the presence of cationic dyes are reported. The zeta potential of polypropylene fibers decreases, and the surface charge density along with surface conductivity increases as the concentration of the dyes in the streaming solution increases. The zeta potential at pH 7 decreases as the amount of graft increases in case of both acrylonitrile- and methacrylic acid grafted fibers. Both surface charge density and surface conductivity increase with the increase in dye concentration for both acrylonitrile- and methacrylic acid-grafted fibers. The results are explained on the basis of the cationic dye adsorption on the grafted fiber in the case of methacrylic acid graft. In the case of acrylonitrile-grafted fibers, this could be due to the strong attraction of cationic dye to the nitrile group of the grafted fibers.  相似文献   

7.
The yield stress-DLVO force relationship is obeyed by α-Al2O3 and alumina-coated TiO2 dispersions with adsorbed polyacrylate only if the yield stress and its corresponding zeta potential data were collected in the positively charged region. In this region, the underlying surface positive charge density of the particles exceeds the negative charge density of the polyacrylate. At this state the adsorbed polyelectrolyte lies flat on the particle surface forming a steric layer of fixed thickness at a given polymer concentration. In the negative charge region, the steric layer thickness is not constant and hence yield stress-DLVO relationship is not obeyed. The (critical) zeta potential at the flocculated-dispersed transition state decreases with increasing polymer concentration. This result reflects a decreasing van der Waals force as the steric layer increases in thickness. A steric layer ensured that the surface or zeta potential is sufficiently low in the flocculated regime for the DLVO theory to remain valid. The ratio of the critical zeta potential square between alumina-coated TiO2 and α-Al2O3 is an indication of their Hamaker constants ratio in water. The effect of alumina coating on the value of this ratio is presented and discussed.  相似文献   

8.
This paper studies the possibility for improving the ductility of cement based materials by means of oligocationic additives. Actually, the setting of cement is due to ionic correlation forces between highly negatively charged C-S-H nanoparticles throughout a calcium rich solution. The main drawback of this strong attraction is its very short range that results in low elastic deformation of hydrated cementitious materials. A way to enlarge the attraction range between C-S-H particles would be to add cationic oligomers that would compete with calcium ions modifying the ionic correlation forces via a bridging mechanism of longer range, which could lead to a more ductile material. The studied parameters were the polymerization degree, the separation distance between the charged monomers and the balance between oligocations and monovalent and divalent cations in the solution. The results, both experimental and numerical by Monte Carlo (MC) simulations, demonstrate that cationic oligomers can compete with calcium cations as counterions to the C-S-H surface. The cohesive forces between C-S-H surfaces, calculated by MC simulations, show an interesting behaviour where range and magnitude can be tuned with oligomer concentration, polymerization degree and line charge density. Thus, it seems possible to modulate the ductility and critical strain of cement by addition of cationic oligomers.  相似文献   

9.
The dispersion behavior of two different types of ultrafine HfC-based powders in ethanol was investigated using polyethyleneimine (PEI) as a dispersant. The first type was synthesized by carbothermal reduction using a modified spark plasma sintering technique (d50: 125 nm). For the 10 wt% HfC suspensions, the highest zeta potential value (67.7 mV), the least sediment after sedimentation test for one day, and finest particle sizes were obtained when the concentration of PEI was 2.0 wt%. The concentrated HfC slurries with a solid loading of 40 vol% were achieved using 1.0 wt% PEI. The second type was mixing the HfC powder with HfSi2-C additives using a high-energy ball milling. The concentrated HfC slurry containing 20 wt% of HfSi2-C sintering additives was prepared up to 50 vol% solid loading using 0.50 wt% PEI. This is the first report for producing highly concentrated HfC-based nano slurries, which were highly suitable for the wet process of ultrahigh-temperature ceramic matrix composites (UTHCMCs).  相似文献   

10.
《分离科学与技术》2012,47(3):590-600
ABSTRACT

Polyethylenimine (PEI), a cationic, hydrophilic flexible polymer has been incorporated into the polyamide (PA) skin layer through an interfacial polymerization (IP) reaction. The modified thin-film composite (TFC) membranes display improved forward osmosis performance: enhancement in water permeability and antifouling characteristics. The incorporation of PEI into the skin layer has been evidenced by different characterization techniques; FTIR for modification of surface functionalities, zeta potential for surface charge, water contact angle for hydrophilicity of the surface, SEM and AFM for surface morphologies including surface roughness, XPS for surface attachment of heteroatoms and their relative composition. PEI was found to induce a positive zeta potential, high degree of hydrophilicity and high factional free volume into the active skin layer. The increase in the relative composition of PEI in the active skin layer was found to decrease the surface roughness and the skin layer thickness. An optimized PEI composition showed significantly enhanced water permeability, salt rejection and fouling resistance in FO and pressure-retarded osmosis (PRO) mode.  相似文献   

11.
Electrokinetic properties of normal polyester flat filament, texturized polyester and cationic dyeable polyester were studied when solutions of different pH and cationic dye concentrations were run through them. The textured polyester exhibited maximum negative zeta potential whereas cationic dyeable polyester showed minimum. The negative zeta potential was found to be maximum near neutral pH. The effect of heat-setting at extreme conditions (220°C, 90 s) on electrokinetic properties was also studied. Such heat-setting was found to lower negative zeta potential, attributed to a decrease in surface area. Cationic dyeable, “easy” dyeable, and normal flat filament type polyester were also investigated. Results with respect to negative zeta potential, surface charge density, and surface conductivity, are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Polypiperazine-amide membranes were modified with poly(ethyleneimine) (PEI) by self-assembled method, through which PEI molecules were fixed on the membrane surface by ionic interaction. In the experiments, the PEI concentration ranged from 50 to 2000 mg·L?1 while the depositing time was fixed at 20 min. The results showed that low PEI concentration resulted in a slight increase of pure water flux, which was attributed to the enhanced membrane surface hydrophilicity. The PEI adsorption on membrane surface had less effect on the re-jections to neutral PEG and sucrose, but improved the rejections to divalent cationic ions and methylene blue as the result of reversion of the membrane surface charge from negative to positive according to the XPS analysis and zeta potential measurements. The membrane modified at PEI=1500 mg·L?1 exhibited high rejection to methylene blue (MB) and is potential to be applied in the treatment of effluents containing positively charged dyes.  相似文献   

13.
阴离子型添加剂对水煤浆动电势的影响   总被引:4,自引:2,他引:2  
选用了变质程度不同的8种煤和三类共9种分子结构不同的阴离子型添加剂,详细考察了添加剂的结构特征对水煤浆动电势的影响规律.研究结果表明,对于线性高分子型阴离子添加剂聚对苯乙烯磺酸钠(PSS),在所考察的相对分子量的范围内(5.34万~33.39万),各煤种的动电势随着分子量的增加而增加(绝对值).对于萘磺酸甲醛缩合物钠盐添加剂(NSF),在萘环上引入甲基和苄基取代基时,动电势均有不同程度的降低.对于木质素和腐植酸盐类添加剂,高磺化度也将导致煤粒动电势的降低.  相似文献   

14.
When used by itself, polyethylene imine (PEI) does not perform well as cement fluid loss additive. Its combination with acetone formaldehyde sulfite (AFS) polycondensate, however, exhibits excellent filtration control. The mechanism underlying this synergistic effect was studied and the conditions producing best results were determined. For optimum performance, PEI and AFS must be reacted with each other to yield a polyelectrolyte complex (PEC) (d ~ 5–10 μm), which effectively plugs the pores of the cement filter cake. Composition, size, and effectiveness of the PEC are strongly influenced by the anionic charge amount of the AFS dispersant. Ionic interactions between cationic imine functionalities of PEI and anionic sulfonate groups existing in AFS were confirmed by conductivity, infrared, zeta potential, and particle size measurements. For AFS samples possessing different degrees of sulfonation, the largest particle size and hence best fluid loss performance of the PEC was found to occur at a PEI:AFS molar ratio, which corresponds to neutral charge. Occurrence of large PEC particles (d ~ 5 μm) within the cement filter cake pores was visualized by scanning electron microscopy, and their stability in highly alkaline cement pore solution was confirmed by particle size measurement. Other anionic polyelectrolytes may be used to yield such PECs with PEI to provide effective fluid loss control for cement slurries. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
《Ceramics International》1987,13(3):139-143
In order to characterize the nature of the interparticle forces that causes particle agglomeration in submicron size alumina particles, eight commercial alumina powders were investigated. Since the strength of the agglomerates depends upon the interparticle forces and the packing density of the particles the Hartley model which relates the tensile strength, packing density of a powder compact, to the interparticle force has been applied. The present experimental results suggest that in the absence of any electrostatic forces (either force of attraction or repulsion between particles) van der Waals force is responsible for the agglomeration of alumina particles.  相似文献   

16.
The stress relaxation behavior of alumina powder compacts, consolidated from aqueous slurries by pressure filtration, is reported. The interparticle forces were controlled prior to consolidation by changing the pH from 3 to 9 and by adding different amounts of salt (0.1 to 2.0 M NH4Cl) to slurries maintained at pH 4. Disk-shaped bodies were rapidly compiessed to an axial strain of 2%, and the resulting stress relaxation data were monitored as a function of time. For bodies formed from dispersed slurries (pH ≤ 4 without added salt), the stress relaxation behavior consisted of an irreproducible mixture of plastic and elastic response. The initial stress and the stress retained afterlong relaxation periods were highest for bodies formed with flocced slurries (pH 9). For bodies formed with coagulated slurries (pH 4 with added salt), the initial stress increased with the addition of 0.1 to 0.5M salt, but the bodies behaved plastically, with more than 90% of the initial stress relaxing within a short period. These results are consistent with a shortrange, repulsive interparticle force that lowers the attractive force between particles. They also suggest that interparticle forces in consolidated bodies can be controlled in a way that should prove useful in preventing damage that occurs during processing and reshaping Operations.  相似文献   

17.
zeta电位与菌悬液絮凝活性   总被引:2,自引:1,他引:1  
吴敏  崔秀云  苗茂栋 《化工学报》2008,59(9):2263-2269
通过克雷伯杆菌、有机高分子絮凝剂表面zeta电位分析和絮凝实验,初步研究了有机高分子絮凝剂对克雷伯杆菌的絮凝特性和絮凝机理。zeta电位测定表明克雷伯杆菌的等电点大致为2.2,阳离子聚丙烯酰胺(cPAM)表面的零电点约为8.0,非离子聚丙烯酰胺(nPAM)和阴离子聚丙烯酰胺(aPAM)表面均带有少量负电荷。pH<8,cPAM带正电,能与带负电的菌体电中和,显示良好的絮凝效果,最佳絮凝条件为pH7,絮凝率(FR)达94.5%。加入无机电解质后,nPAM絮凝效果变化最明显,pH4时絮凝率达95.1%,结果表明,克雷伯杆菌发酵液絮凝除菌过程是以电性中和为主,吸附架桥为辅。  相似文献   

18.
Interfacial chemistry and particle interactions of polydispersed chlorite clay mineral dispersions as a function of pH, solid content and ageing time have been investigated in the pH range 2–9 at 25 °C. Particle zeta potential, reflecting interfacial chemistry indicates a strong pH history and solid loading dependency. Zeta potential trends observed from high to low pH sweep show that an isoelectric points of pH ≈ 2.5 and 5, respectively for dilute (0.05 wt.%) and both 8 and 57 wt.% suspension. An electrokinetic potential bifurcation is observed upon reverse pH from low (e.g. 2) to high value (e.g. 9), indicative of pH-mediated interfacial chemistry modification. Particle interactions measured through dispersion shear yield stress show a similar pH-history dependency and compliance with DLVO theory. Supernatant analysis suggests that the suspension pH dependent behaviour may be attributed to the leach of Mg(II), Fe(II/III), Al(III) and Si(IV) ions from the chlorite particles at lower pH. Formation and specific adsorption of hydrolysed metal complexes onto particles which occurs at higher pH values manifest in the observed interfacial chemistry and particle interactions. The findings enable us to accurately rationalise the nature of the inter-particle forces underpinning particle network structure and strength as a function of dispersion conditions during aqueous processing of clay-based minerals.  相似文献   

19.
The complexes of kaolinite and amorphous iron hydroxides (ferrihydrite) initially prepared at pH 3.0 and 9.5 were brought to equilibrium at different pH values at pH 3–10. Bingham yield stress for the suspensions of the complexes have been examined as a function of pH. The complexes prepared at pH 3.0 and 9.5 both gave higher Bingham yield stress than the kaolinite in higher pH range, and the amorphous iron hydroxides in the complexes prepared at 9.5 were more effective in enhancing yield stress. The results are discussed in terms of the charge characteristics of the amorphous iron hydroxide and its association with the kaolinite surfaces by means of electron microscopy and zeta potential and surface area determinations.  相似文献   

20.
Stable YAG (Y3Al5O12) aqueous slurry with ammonium polyacrylate (NH4PAA) polyelectrolytes as dispersant was prepared by ball mill method. The effects of polyelectrolyte concentration and pH value on the stability of the suspension is described here, and the stability maps are constructed at different pH value and polymer concentration. The rheological behavior of YAG slips of different solid loading (60–70%) has been studied by measuring their viscosity and shear stress as a function of shear rate and pH of the slurry. An optimal amount of dispersant and pH value for the suspension was found. YAG suspension displays a maximum in zeta potential values and a minimum viscosity in pH range of 9–11. Slips behaved as near Newtonian at the pH value up to a solid loading of 60 wt% and as non-Newtonian with thixotropic behaviors above this solid loading value. The density and the green as well as sintered microstructure of the cast products bear a direct relationship to the state of this slips induced by the alternation in the pH and the concentration of the dispersant as well as solid loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号