首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, phenol, aromatic, and non‐biodegradable organic matter were investigated and found to be removed from the model solution through chemical oxidation using Fenton reagent. The effects of the initial phenol concentration, hydrogen peroxide, and ferrous sulfate concentrations on the removal efficiency were investigated. Performance of the chemical oxidation process was monitored with phenol and COD (Chemical Oxygen Demand) analyses. In the experimental studies, phenol removal of over 98 % and COD removal of nearly 70 % were achieved. The optimum conditions for Fenton reaction both for initial phenol concentrations of 200 and 500 mg/L were found at a ratio [Fe2+]/[H2O2] (mol/mol) equal to 0.11. According to the results, chemical oxidation using Fenton reagent was found to be too effective, especially for phenol removal. However, this method has limited removal efficiency for COD.  相似文献   

2.
3.
The feasibility of the electrochemical generation of Fenton's reagent is demonstrated and the subsequent reaction of produced OH radical with benzene studied. Under the proposed working conditions, phenol is obtained as the main product, with current yield as high as 60% (on the basis of 3 F/mole of phenol) and with only traces of other higher oxidized compounds. At fixed H2SO4 concentration and with suitable [Fe3+]/[O2] ratio, a maximum in current yield is obtained; this yield may presumably be increased if continuous removal of phenol is employed during the electrolysis.  相似文献   

4.
The catalytic performance of transition metal (Fe2+ or Cu2+) containing nano-sized hol low core mesoporous shell carbon (HCMSC) heterogeneous catalysts for the hydroxylation of phenol with hydrogen peroxide (H2O2) in water was investigated in a batch reactor. The metal-containing HCMSC catalyst showed higher activity than the same metal ion-exchanged zeolites. The nature of the metal and its content in the HCMSC had remarkable influence on the reaction results under the typical reaction conditions (PhOH/H2O2=3, reaction temperature=60 ‡C). Fe2+ containing HCMSC catalyst showed high catalytic activity with phenol conversion of 29%, selectivity to catechol (CAT) and hydroquinone (HQ) about 85%, H2O2 effective conversion about 70% and selectivity to benzoquinone (BQ) below 1% in the batch system.  相似文献   

5.
Several polyoxometalates: Na2HPM12O40, H3PM12O40, Na2HPM12O40, (VO)H[PM12O40] and (n-Bu4N)3[PM12O40] (M = Mo and W) as well as (n-Bu4N)3 + x[PW12−xVxO40] (x = 0–3) were synthesized and characterized. Benzothiophene, dibenzothiophene and 4,6-dimethyl-dibenzothiophene were used as model sulfur compounds in gas oil. The oxidation reaction was performed using different polyoxometalates as catalyst and H2O2/acetic acid. The experimental results show that the W-based polyoxometalate catalysts are more active than the Mo catalysts. The oxidation reactivity of the catalysts depends on the type of countercation: Na+ > H+ > (VO)+ > (n-Bu4N)+. In a series of (n-Bu4N)3 + x [PW12−xVxO40] (x = 0–3) the order of catalytic activity is V3 > V2 > V1 > V0. The reactivity order of the sulfur compounds is: dibenzothiophene > 4,6-dimethyldibenzo-thiophene > benzothiophene. The catalytic system in this work was used for the oxidation of gas oil combined with solvent extraction to remove sulfur content in gas oil. Under mild reaction condition, high sulfur removal up to 98% can be achieved with high oil recovery (90%).  相似文献   

6.
Nano-crystalline strontium hexaferrite (SrFe12O19) powder was synthesized using the classical co-precipitation and microemulsion methods. The precursors were obtained by precipitating Sr2+ and Fe2+ ions using tetramethylammonium hydroxide and calcinating at different temperatures ranging from 400 °C to 1000 °C in air. The influence of the Sr2+/Fe3+ mol ratio and the calcination temperature on the product formation and magnetic properties were studied. The formation of nanosized particles of SrFe12O19 with a relatively high saturation magnetization Ms = 64 Am2/kg, remanent magnetization of Mr = 39 Am2/kg and a coercitivity of Hc = 5.5 kOe was achieved at a Sr2+/Fe3+ mol ratio of 1:8 calcined at 900 °C. The formation of the SrFe12O19 was inspected using XRD analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA), TEM, and magnetic measurements.  相似文献   

7.
An inorganic-organic complex with a vanadium-substituted polyoxometalate 1, formulated as [Cu(phen)2]2PVW11O40 was hydrothermally synthesized. Complex 1 crystallizes in the monoclinic P2(1)/c space group with a = 25.9932(12) Å, b = 11.9889(6) Å, c = 23.2672(11) Å, β = 113.6750(10)°, V = 6640.5(6) Å3, R = 0.0312, and Z = 4. Complex 1 is constructed from a Keggin-type anion PVW11O404− coordinated to two [Cu(phen)2]2+ units. One [Cu(phen)2]2+ unit is coordinated to a terminal oxygen and the other [Cu(phen)2]2+ unit is coordinated to a bridging oxygen of the polyoxoanion. Redox activities for both the tungsten and vanadium centers have been observed using cyclic voltammetry performed on 1-bulk modified carbon paste electrode (CPE). It was found that 1 presents good electrocatalytic activities not only for the reduction of IO3, NO2, and H2O2 but also the oxidation of l-cysteine. Complex 1 also shows intense luminescent properties arising from ligand-to-copper charge transfer and oxygen-to-vanadium charge transfer at room temperature in the solid state.  相似文献   

8.
Fast and simple quantitative determination in dispersed systems (layered double hydroxides - LDHs - suspensions in aqueous solutions) was performed by a procedure that couples flow injection and amperometric detection (FI-AM). LDH dispersions are injected in a continuous flow (1 mL min−1) of 0.05 mol L−1 KNO3 solution and [Cu(H2O)6]2+, used as a probe, is detected at a glassy carbon electrode housed in a flat electrochemical cell. The current intensity, recorded at the selected working potential (−0.25 V vs Ag/AgCl/NaCl (3 mol L−1)), presents a linear relationship with [Cu(H2O)6]2+ concentration and the procedure offers high sensitivity (slope = 0.036 μA/(μmol L−1)), a low detection limit (=0.7 μmol L−1) and a wide quantification range (4-200 μmol L−1).The method was applied to [Cu(H2O)6]2+ determination in two particular LDH-aqueous solution dispersed systems: (1) [Cu(H2O)6]2+ scavenging by etilendiammintetraacetic acid (EDTA) modified Zn-Al-LDHs, and (2) [Cu(H2O)6]2+ release from a copper doped Mg-Al-LDHs. The results obtained are comparable to those reported in previous works using different quantification techniques. FI-AM determination is applied without sample pretreatment (solid-supernatant separation) providing a high sampling rate (above 120 samples h−1) that allows a better comprehension of the processes, particularly at the initial stages.  相似文献   

9.
NaNbO3 fine powders were prepared by reacting niobium pentoxide with low NaOH concentration solution under hydrothermal conditions at 160 °C. The reaction ruptured the corner-sharing of NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depended on the [OH] and reaction time. The fine Nb2O5 powder first aggregated to large particles and then turned to metastable intermediates with multifarious morphology. The reaction was fast for the situation of [OH] = 2 M. The [OH] determined the structure of final products, and three types of NaNbO3 powder with the orthorhombic, tetragonal and cubic symmetries were obtained, respectively, depending on the [OH]. The low [OH] was propitious to yield orthorhombic NaNbO3. The present work demonstrated that higher [OH] was not favored to synthesize NaNbO3 powders and the conversion speed in this reaction was not in proportion to the [OH].  相似文献   

10.
The oxidation and reduction of carbonate, GR(CO3), and sulphate, GR(SO4), green rusts (GR) have been studied through electrochemical techniques, electrochemical quartz crystal microbalance (EQCM), FTIR, XRD and SEM. The used samples were made of thin films electrodeposited on gold substrate. The results from the present work, from our previous studies and from literature were compiled in order to establish a general scheme for the formation and transformation pathways involving carbonate or sulphate green rusts. Depending on experimental conditions, two routes of redox transformations occur. The first one corresponds to reaction via solution and leads to the formation of ferric products such as goethite or lepidocrocite (oxidation) or to the release of FeII ions into the solution (reduction) with soluble FeII-FeIII complexes acting as intermediate species. The second way is solid-state reaction that involve conversion of lattice Fe2+ into Fe3+ and deprotonation of OH groups in octahedra sheets (solid-state oxidation) or conversion of lattice Fe3+ into Fe2+ and protonation of OH groups (solid-state reduction). The solid-state oxidation implies the complete transformation of GR(CO3) or GR(SO4) to ferric oxyhydroxycarbonate exGRc-Fe(III) or ferric oxyhydroxysulphate exGRs-Fe(III), for which the following formulas can be proposed, FeIII6(OH)(12−2y)(O)(2+y)(H2O)(y)(CO3) or FeIII6(OH)(12−2z)(O)(2+z)(H2O)(6+z)(SO4) with 0 ≤ y or z ≤ 2. The solid-state reduction gives ferrous hydroxycarbonate exGRc-Fe(II) or ferrous hydroxysulphate exGRs-Fe(II), which may have the following chemical formulas, [FeII6(OH)10(H2O)2]·[CO3, 2H2O] or [FeII6(OH)10(H2O)2]·[SO4, 8H2O].  相似文献   

11.
A coupled O3/Fenton process is applied to study the degradation ef?ciency of organic pollutants. The C.I. Acid Blue 80 (AB80), a kind of anthraquinone dye, is used as target contaminant. The results show that the combination of ozonation and Fenton process is a highly effective way of removing color from wastewater. Response surface methodology is applied to optimize the working conditions and the effects and interactions among initial pH (X1), mole ratio of H2O2/Fe2+ (X2) and ozone flux (X3) are investigated. Regression equations determines that the best condition is that initial pH = 2.85, [H2O2]/[Fe2+] = 18.10 and ozone flux = 55.70 L.h?1. It turns out the relative error of 1.32% with the predicted model when the actual value which is 88.76% in the best condition, compared to the predictive value of 88.95% under same condition. UV-Vis and FT-IR analysis are used as an assisted technique to study degradation mechanism during the oxidation process. The intermediate products are determined by gas chromatography/mass spectrometry (GC/MS) analysis and the plausible degradation pathway is proposed.  相似文献   

12.
Free acids of the iron substituted heteropoly acids (HPA), H7[(P2W17O61)FeIII(H2O)] (HFe1) and H18[(P2W15O56)2FeIII2(H2O)2] (HFe2) were prepared from the salts K7[(P2W17O61)FeIII(H2O)] (KFe1) and Na12[(P2W15O56)2FeIII4(H2O)2] (NaFe4), respectively. The iron-substituted HPA were adsorbed on to XC-72 carbon based GDLs to form HPA doped GDEs after water washing with HPA loadings of ca. 1 μmol. The HPA was detected throughout the GDL by EDX. Solution electrochemistry of the free acids are reported for the first time in sulfate buffer, pH 1-3. The hydrogen oxidation reaction was catalyzed by KFe1 at 0.33 V, with an exchange current density of 38 mA/cm2. Moderate activity for the oxygen reduction reaction was observed for the iron substituted HPA, which was dramatically improved by selectively removing oxygen atoms from the HPA by cycling the fuel cell cathode under N2 followed by reoxidation to give a restructured oxide catalyst. The nanostructured oxide achieved an OCV of 0.7 V with a Tafel slope of 115 mV/decade. Cycling the same catalysts in oxygen resulted in an improved catalyst/ionomer/carbon configuration with a slightly higher Tafel slope, 128 mV/decade but a respectable current density of 100 mA/cm2 at 0.2 V.  相似文献   

13.
A series of CoFe2O4 nanoparticles have been prepared via co-precipitation and controlled thermal sintering, with tunable diameters spanning 7–50 nm. XRD confirms that the inverse spinel structure is adopted by all samples, while XPS shows their surface compositions depend on calcination temperature and associated particle size. Small (<20 nm) particles expose Fe3+ enriched surfaces, whereas larger (50 nm) particles formed at higher temperatures possess Co:Fe surface compositions close to the expected 1:2 bulk ratio. A model is proposed in which smaller crystallites expose predominately (1 1 1) facets, preferentially terminated in tetrahedral Fe3+ surface sites, while sintering favours (1 1 0) and (1 0 0) facets and Co:Fe surface compositions closer to the bulk inverse spinel phase. All materials were active towards the gas-phase methylation of phenol to o-cresol at temperatures as low as 300 °C. Under these conditions, materials calcined at 450 and 750 °C exhibit o-cresol selectivities of 90% and 80%, respectively. Increasing either particle size or reaction temperature promotes methanol decomposition and the evolution of gaseous reductants (principally CO and H2), which may play a role in CoFe2O4 reduction and the concomitant respective dehydroxylation of phenol to benzene. The degree of methanol decomposition, and consequent H2 or CO evolution, appears to correlate with surface Co2+ content: larger CoFe2O4 nanoparticles have more Co rich surfaces and are more active towards methanol decomposition than their smaller counterparts. Reduction of the inverse spinel surface thus switches catalysis from the regio- and chemo-selective methylation of phenol to o-cresol, towards methanol decomposition and phenol dehydroxylation to benzene. At 300 °C sub-20 nm CoFe2O4 nanoparticles are less active for methanol decomposition and become less susceptible to reduction than their 50 nm counterparts, favouring a high selectivity towards methylation.  相似文献   

14.
Several novel oxidation removal processes of elemental mercury (Hg0) from flue gas using combined Fe2+/Mn2+ and heat activated peroxymonosulfate (PMS)/H2O2 solutions in a bubbling reactor were proposed. The operating parameters (e.g., PMS/H2O2 concentration, Fe2+/Mn2+ concentration, solution pH, activation temperature, and Hg0/NO/SO2/O2/CO2 concentration), mechanism and mass transfer-reaction kinetics of Hg0 removal were investigated. The results show that heat and Fe2+/Mn2+ have significant synergistic effect for activating PMS and PMS/H2O2 to produce free radicals to oxidize Hg0. Hg0 removal is strongly affected by PMS/H2O2 concentration, Fe2+/Mn2+ concentration, activation temperature, and solution pH. · and ·OH produced from combined heat and Fe2+/Mn2+ activated PMS/H2O2 play a leading role in Hg0 removal. Under optimized experimental conditions, Hg0 removal efficiencies reach 100, 94.9, 66.9, and 58.9% in heat/Fe2+/PMS/H2O2, heat/Mn2+/PMS/H2O2, heat/Fe2+/PMS, and heat/Mn2+/PMS systems, respectively. Hg0 removal processes in four systems belong to fast reaction and were controlled by mass transfer under optimized experimental conditions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 161–174, 2019  相似文献   

15.
Nano-sized Nb2O5/carbon cluster/Cr2O3 composite material was prepared by the calcination of NbCl5/chromium acetylacetonate/epoxy resin complex under an argon atmosphere. The Pt-loaded Nb2O5/carbon cluster/Cr2O3 composite material shows the photocatalytic activity under visible light irradiation. The composite material successfully decomposed the water into H2 and O2 in the [H2]/[O2] ratio of 2. Electron spin resonance spectral examination suggests a two-step electron transfer in the process of Nb2O5 → carbon cluster → Cr2O3 → Pt.  相似文献   

16.
A [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine)/WO3 hybrid (denoted as Ru-WO3) film was prepared as a base layer on an indium tin oxide electrode by electrodeposition from a colloidal solution containing peroxotungstic acid, [Ru(bpy)3]2+ and poly(sodium 4-styrenesulfonate). A ruthenium purple (RP, FeIII4[RuII(CN)6]3, denoted as FeIII-RuII) layer was electrodeposited on a neat WO3 film or a Ru-WO3 film from an aqueous RP colloid solution to yield a WO3/RP bilayer film or a Ru-WO3/RP bilayer film, respectively. The spectrocyclic voltammetry measurement reveals that FeII-RuII is oxidized to FeIII-RuII by a geared reaction of [Ru(bpy)3]2+/3+ and FeIII-RuII is reduced by a geared reaction of HxWO3/WO3 in the Ru-WO3/RP film. These geared reactions produced electrochromic hysteresis of the RP layer. However, the absorbance change in the hysteresis was smaller than that for the Ru-WO3/Prussian blue bilayer film reported previously, resulting from the lower electroactivities of any redox component for the Ru-WO3/RP film. The lower electroactivities could be explained by the specific interface between the Ru-WO3 and RP layers. It might contribute to either an increase of the interfacial resistance between the Ru-WO3 and RP layers, or formation of the physically precise interface between the layers to make it difficult for counter ions to be transported in the interfacial liquid phase involved in the redox reactions in the film. The specific interface at the Ru-WO3 and RP layers could be formed possibly by the electrostatic interaction between [Ru(bpy)3]2+ and terminal [Ru(CN)6]4− moieties of RP. It could be suggested by the decreased redox potential of [Ru(bpy)3]2+ in the Ru-WO3 layer from 1.03 to 0.61 V by formation of the RP layer.  相似文献   

17.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

18.
Kinetics of phenol mineralization by Fenton-like oxidation   总被引:1,自引:0,他引:1  
Altai Bach 《Desalination》2010,264(3):188-192
The kinetics of hydrogen peroxide decomposition and the mineralization rate of phenol in homogeneous aqueous solution (pH < 3) via Fenton-like reaction were studied. Results were correlated with the generation of hydroxyl radicals as well as with iron speciation. Batch experiments were carried out in de-ionized water in a completely mixed batch reactor under a wide range of experimental conditions (3500 ≤ [H2O2] ≤ 8250 mg/L; 100 mg/L ≤ [Fe] ≤ 2350 mg/L; 2.5 ≤ [H2O2]/[Fe] ≤ 83; 0 mg/L ≤ [TOC] ≤ 1000 mg/L). Results demonstrated that the rate of hydrogen peroxide decomposition, phenol mineralization and ferrous ions formation depended on both the initial concentration of the phenol and on the weight ratio between hydrogen peroxide and iron. A linear correlation was found between the mineralization rate of phenol and the decomposition rate of hydrogen peroxide indicated that 10 g of hydrogen peroxide was required to mineralize 1 g of phenol.  相似文献   

19.
Nano-sized ZrO2/carbon cluster nanocomposite material was successfully prepared by the calcination of Zr(acac)4/epoxy resin complex in air. The composite material obtained by calcining at 200 °C was treated with hydrogen hexachloroplatinate hexahydrate (H2PtCl6) to obtain Pt-loaded materials denoted as Ic200Pt'sH's. The Pt-loaded material modified with MnO2 particles efficiently decompose water into H2 and O2 with a [H2]/[O2] ratio of 2 under the irradiation of visible light (λ > 460 nm) through the electron transfer process of MnO2 → carbon clusters → ZrO2 → Pt.  相似文献   

20.
In the present study, Fenton and sono‐Fenton processes were applied to the oxidative decolorisation of synthetic textile wastewater including CI Reactive Orange 127 and polyvinyl alcohol. Process optimisation [pH, ferrous ion (Fe2+) and hydrogen peroxide (H2O2)], kinetic studies and their comparison were carried out for both of the processes. The sono‐Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35‐kHz frequency and 80 W power. The optimum conditions were determined as [Fe2+] = 20 mg l?1, [H2O2] = 15 mg l?1 and pH = 3 for the Fenton process and [Fe2+] = 25 mg l?1, [H2O2] = 5 mg l?1 and pH = 3 for the sono‐Fenton process. The colour removals were 89.9% and 91.8% by the Fenton and sono‐Fenton processes, respectively. The highest decolorisation was achieved by the sono‐Fenton process because of the production of some oxidising agents as a result of sonication. Consequently, ultrasonic irradiation in the sono‐Fenton process slightly increased the colour removal to 91.8%, while decreasing the hydrogen peroxide dosage to one‐third of that of the Fenton process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号