首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper a general nonlinear third-order plate theory that accounts for (a) geometric nonlinearity, (b) microstructure-dependent size effects, and (c) two-constituent material variation through the plate thickness (i.e., functionally graded material plates) is presented using the principle of virtual displacements. A detailed derivation of the equations of motion, using Hamilton’s principle, is presented, and it is based on a modified couple stress theory, power-law variation of the material through the thickness, and the von Kármán nonlinear strains. The modified couple stress theory includes a material length scale parameter that can capture the size effect in a functionally graded material. The governing equations of motion derived herein for a general third-order theory with geometric nonlinearity, microstructure dependent size effect, and material gradation through the thickness are specialized to classical and shear deformation plate theories available in the literature. The theory presented herein also can be used to develop finite element models and determine the effect of the geometric nonlinearity, microstructure-dependent size effects, and material grading through the thickness on bending and postbuckling response of elastic plates.  相似文献   

2.
Based on three-dimensional theory, this paper investigates the axisymmetric bending of transversely isotropic and functionally graded circular plates subject to arbitrarily transverse loads using the direct displacement method. The material properties can arbitrarily vary along the thickness of the plate. The transverse load is expanded in the Fourier–Bessel series and superposition principle is then used to obtain the total response based on the results of each item of the series. For one item of the series of the load, we assume the distributions of the displacements in the radial direction and therefore only the distributions of the displacements in thickness direction are required to find. If the material properties vary in an exponential law, the exact solutions can be obtained for elastic simple support and rigid slipping support, which are satisfied on the every point of the boundaries. Moreover, the analytical solutions are also presented for simply supported and clamped conditions, which are satisfied using Saint Venant principle. Simultaneously, through the layerwise method a semi-analytical solution is proposed for the case of arbitrary variation of the material properties. Finally the numerical examples are presented to verify the proposed method.  相似文献   

3.
In this paper, a size-dependent formulation is presented for Timoshenko beams made of a functionally graded material (FGM). The formulation is developed on the basis of the modified couple stress theory. The modified couple stress theory is a non-classic continuum theory capable to capture the small-scale size effects in the mechanical behavior of structures. The beam properties are assumed to vary through the thickness of the beam. The governing differential equations of motion are derived for the proposed modified couple-stress FG Timoshenko beam. The generally valid closed-form analytic expressions are obtained for the static response parameters. As case studies, the static and free vibration of the new model are respectively investigated for FG cantilever and FG simply supported beams in which properties are varying according to a power law. The results indicate that modeling beams on the basis of the couple stress theory causes more stiffness than modeling based on the classical continuum theory, such that for beams with small thickness, a significant difference between the results of these two theories is observed.  相似文献   

4.
ABSTRACT

In this article, the equations of motion for functionally graded plates with surface-mounted piezoelectric layers, while accounting for the gradient elasticity through the modified couple stress model and linear piezoelectricity, are derived using Hamilton’s principle. The formulation includes the coupling between mechanical deformations and the charge equations of electrostatics. The mathematical model developed herein is an equivalent single layer theory for mechanical displacement field and the potential functions. The in-plane displacements are assumed to vary as cubic functions of the thickness coordinate while the transverse displacement is assumed to vary as a quadratic function of the thickness coordinate through plate thickness. The potential function is assumed as the combination of half cosine variation of electric potential and linear variation of applied voltage on outer surfaces. The approach described here is that standard plate models can be enhanced to include the coupling between the charge equations and the mechanical deformations as well as the size dependent effect of micro- and nano-scale structures. An analytical solution of the developed model is presented using the Navier solution technique. A parametric study is performed to study the effect of material variation through thickness of plates, length scale parameters to capture the size-dependent effects, and thickness ratio between piezoelectric layers and the whole plate.  相似文献   

5.
Dynamic stability of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and Timoshenko beam theory. This non-classical Timoshenko beam model contains a material length scale parameter and can interpret the size effect. The material properties of FGM microbeams are assumed to vary in the thickness direction and are estimated though Mori–Tanaka homogenization technique. The higher-order governing equations and boundary conditions are derived by using the Hamilton’s principle. The differential quadrature (DQ) method is employed to convert the governing differential equations into a linear system of Mathieu–Hill equations from which the boundary points on the unstable regions are determined by Bolotin’s method. Free vibration and static buckling are also discussed as subset problems. A parametric study is conducted to investigate the influences of the length scale parameter, gradient index and length-to-thickness ratio on the dynamic stability characteristics of FGM microbeams with hinged–hinged and clamped–clamped end supports. Results show that the size effect on the dynamic stability characteristics is significant only when the thickness of beam has a similar value to the material length scale parameter.  相似文献   

6.
An extension to classical lamination theory is presented for the improved analysis of thin to moderately thick functionally graded plates. The method results in an explicit formulation that accommodates any through-thickness variation in the elastic, hygrothermal and piezoelectric properties of each layer. Additionally, variations in the material rotation angle, temperature, moisture content and electric field strength through each layer are taken into account. The method relies on representing with polynomial series the variation in both the properties of each ply and the hygrothermal and piezoelectric loading. Validation problems are presented that demonstrate the application and accuracy of the method.  相似文献   

7.
The bending response of functionally graded material (FGM) sandwich plates subjected to thermomechanical loads is investigated using a four-variable refined plate theory. A new type of FGM sandwich plate, namely, both FGM face sheets and an FGM hard core, is considered. Containing only four unknown functions, the governing equations are deduced based on the principle of virtual work and then these equations are solved via the Navier approach. Analytical solutions are obtained to predict the deflections and stresses of simply supported FGM sandwich plates. Benchmark comparisons of the solutions obtained for a degradation model (functionally graded face sheets and homogeneous cores) with ones computed by several other theories are conducted to verify the accuracy and efficiency of the present approach. The influences of volume fraction distribution, geometrical parameters, and thermal load on dimensionless deflections and normal and shear stresses of the FGM sandwich plates are studied.  相似文献   

8.
基于一种新修正偶应力理论建立了微尺度平面正交各向异性功能梯度梁模型。模型中包含两个材料尺度参数,因此能够分别描述在两个正交方向上由尺度效应带来的不同大小弯曲刚度增强。基于最小势能原理推导了平衡方程和边界条件,并以自由端受集中载荷作用的悬臂梁为例给出了弯曲问题的解析解。该梁模型的控制方程以及解的形式和经典梁模型是一致的,只是在刚度项中增加了一项和尺度效应有关的项。算例结果表明:采用本文模型所预测的梁挠度总是小于经典理论的结果,即捕捉到了尺度效应。尺度效应会随着梁几何尺寸的减小而增大,并在梁的几何尺寸远大于尺度参数时逐渐消失。  相似文献   

9.
The analysis of thermoelastic problem of a rotating functionally graded hollow circular disk is made. The hollow disk is assumed to have varying material properties along the radial direction. An analytical method is presented to investigate steady thermal stresses in a functionally graded circular annulus rotating with constant angular velocity about its central axis. The associated boundary value problem is reduced to a Fredholm integral equation. The thermal stresses and radial displacement are obtained by numerically solving the resulting equation. A comparison of the numerical results with the exact ones for material properties of special power-law profile confirms the effectiveness of the method. For generally varying material parameters, numerical results are presented graphically to show the effects of gradient parameter, temperature change, angular velocity and thickness of the disk on the distribution of thermal stresses and radial displacement.  相似文献   

10.
In this article, the functionally graded (FG) cylindrical thin shell formulation is developed by using modified couple stress theory. The equations of motion and classical and nonclassical boundary conditions are extracted based on Hamilton's principle. As a special case, the equations of motion in conjunction with the boundary conditions for simply supported FG cylindrical shell are obtained, and then Navier solution procedure is used for analysis free vibration of nano shell. Afterwards, the influences of different parameters like length scale parameter, distribution of FG properties, and length to radius ratio on dimensionless natural frequency are investigated and compared with classical theory.  相似文献   

11.
The equilibrium equations of the first-order nonlinear von Karman theory for FG circular plates under asymmetric transverse loading and heat conduction through the plate thickness are reformulated into those describing the interior and edge-zone problems of the plate. A two parameter perturbation technique, in conjunction with Fourier series method is used to obtain analytical solutions for nonlinear behavior of functionally graded circular plates with various clamped and simply-supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified with known results in the literature. The load–deflection curves for different loadings, boundary conditions, and material constant in a solid circular plate are studied and discussed. It is shown that the behavior of FG plates with clamped or simply-supported boundary conditions are completely different. Under thermo-mechanical loading, snap-through buckling behavior is observed in simply-supported FG plates which are immovable in radial direction. Moreover, it is found that linear theory is inadequate for analyzing FG and also homogenous plates with immovable boundary supports in radial direction and subjected to thermal loading, even for deflections that are normally considered small.  相似文献   

12.
Nonlinear vibration, nonlinear bending and postbuckling analyses are presented for a sandwich plate with FGM face sheets resting on an elastic foundation in thermal environments. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both FGM face sheets and homogeneous core layer are assumed to be temperature-dependent. The numerical results reveal that the foundation stiffness and temperature rise have a significant effect on the natural frequency, buckling load, postbuckling and nonlinear bending behaviors of sandwich plates. The results also reveal that the core-to-face sheet thickness ratio and the volume fraction distribution of FGM face sheets have a significant effect on the natural frequency, buckling load and postbuckling behavior of the sandwich plate, whereas this effect is less pronounced for the nonlinear bending, and is marginal for the nonlinear to linear frequency ratios of the same sandwich plate.  相似文献   

13.
This paper presents a simple analytical approach to investigate the stability of functionally graded plates under in-plane compressive, thermal and combined loads. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for functionally graded plates are derived by using the classical plate theory taking into account both geometrical nonlinearity in von Karman sense and initial geometrical imperfection. The resulting equations are solved by Galerkin procedure to obtain explicit expressions of postbuckling load–deflection curves. Stability analysis of a simply supported rectangular functionally graded plate shows the effects of the volume fraction index, plate geometry, in-plane boundary conditions, and imperfection on postbuckling behavior of the plate.  相似文献   

14.
15.
This article presents a new elasticity solution for transversely isotropic, functionally graded circular plates subject to axisymmetric loads. It is assumed that the material properties vary along the thickness of a circular plate according to an exponential form. By extending the displacement function presented by Plevako to the case of transversely isotropic material, we derived the governing equation of the problem studied. The displacement function was assumed as the sum of the Bessel function and polynomial function to obtain the analytical solution of a transversely isotropic, functionally graded circular plate under different boundary conditions. As a numerical example, the influence of the graded variations of the material properties on the displacements and stresses was studied. The results demonstrate that the graded variations have a significant effect on the mechanical behavior of a circular plate.  相似文献   

16.
Natural frequencies and buckling stresses of plates made of functionally graded materials (FGMs) are analyzed by taking into account the effects of transverse shear and normal deformations and rotatory inertia. The modulus of elasticity of the plates is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional (2-D) higher-order theory for rectangular functionally graded (FG) plates is derived through Hamilton’s principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of FG plates with simply supported edges. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Critical buckling stresses of FG plates subjected to in-plane stresses are also obtained and a relation between the buckling stress and natural frequency of simply supported FG plates without in-plane stresses is presented. The distributions of modal displacements and modal stresses in the thickness direction are obtained accurately by satisfying the surface boundary conditions of a plate. The modal transverse stresses have been obtained by integrating the three-dimensional equations of motion in the thickness direction starting from the top or bottom surface of a plate. The present numerical results are also verified by satisfying the energy balance of external and internal works are considered to be sufficient with respect to the accuracy of solutions. It is noticed that the present 2-D higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported FG plates.  相似文献   

17.
Aero-thermoelastic stability of functionally graded plates   总被引:1,自引:0,他引:1  
In this paper, an analytical investigation intended to determine the aero-thermoelastic stability margins of functionally graded panels is carried out. For this purpose, piston theory aerodynamics has been employed to model quasi-steady aerodynamic loading. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law and the Mori–Tanaka scheme are used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The effects of compressive in-plane loads and both uniform and through the thickness non-linear temperature distributions are also considered. Hamilton’s principle is used to determine the coupled partial differential equations of motion. Using Galerkin’s method, the derived equations are transformed into a set of coupled ordinary differential equations, and then solved by numerical time integration. Some examples comparing the stability margins of functionally graded panels with those of plates made of pure metals and pure ceramics are presented. It is shown that the use of functionally graded materials can yield an increase or decrease of the aeroelastic stability in the supersonic flow for different regions.  相似文献   

18.
A thermo elastic analysis is presented for axisymmetric rotating disks made of functionally graded material (FGM) with variable thickness. Material properties are assumed to be temperature-dependent and graded in the radial direction according to a grading index power law distribution. The temperature field considered is assumed to be uniformly distributed over the disk surface and varied in the radial direction. Semi-analytical solutions for the displacement field are given for solid disk and annular disk under free-free and fixed-free boundary conditions. The effects of the thermal field, the material grading index and the geometry of the disk on the displacement and stress fields are investigated. Results of this study emphasize on the crucial role of the temperature-dependent properties in a high temperature environment. A comparison of these results with the reported ones in the literature that is temperature-dependent versus temperature-independent suggests that a functionally graded rotating disk with concave thickness profile can work more efficiently than the one with uniform thickness irrespective of whether the material properties are assumed to be temperature-dependent or temperature-independent.  相似文献   

19.
The three-dimensional impact behaviours of functionally graded (FG) circular plates were studied under a drop-weight. The functionally graded circular plate was composed of ceramic (SiC) and metal (Al) phases and the through-thickness mechanical properties through the region between the metal and ceramic layers vary continuously according to a power-law distribution of the volume fraction of the ceramic. The through-thickness material properties of the FG circular plate were determined using the Mori–Tanaka scheme. The effects of layer number and compositional gradient exponent as well as impactor velocity and plate radius on the elastic impact response of the FG circular plates were investigated. The compositional gradient exponent, impactor velocity and plate radius played an important role on the impact response of the FG circular plates, whereas the layer number through the plate thickness had a minor effect. In addition, the failure strains in all layers were determined using Tamura–Tomota–Ozowa (TTO) model in order to predict the damage regions in each layer through the thickness of FG circular plates.  相似文献   

20.
ABSTRACT

The modified couple stress theory (MCST) is utilized to investigate the bending of viscoelastic nanobeams laying on visco-Pasternak elastic foundations based on a new shear and normal deformations beam theory. This model consists of the material length scale coefficient that captures the size impact on small-scale beams. The simply supported beam is made of viscoelastic material, subjected to time harmonic transverse load. The nanobeam is presumed to be laying on double layers of foundations. The first layer is modeled as Kelvin–Voigt viscoelastic model and the second is taken as a shear layer. Based on the proposed beam theory and MCST, the differential motion equations are deduced using Hamilton’s principle. To check the validity of the obtained formulations, the predicted results are compared with those available in the open literature. In addition, the influences of various parameters such as the material length scale parameter, length-to-depth ratio, viscoelastic damping structure, the stiffness and damping coefficients of the viscoelastic substrate, and shear and normal strains on the deflection and stresses are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号