首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于超声导波的多模态特性和频散特性,实际检测时在同一激发频率下存在多种模态的混合信号,影响导波检测的灵敏度。针对上述存在的问题,在建立导波频散信号的数学模型的基础上,提出一种基于导波基函数投影变换的单模态超声导波提取方法。首先根据频散传递函数建立各模态导波信号的数学模型,将各模态导波信号构建为一组导波模态基,之后,以模态基函数为投影变换核,对接收信号进行投影变换,从而实现多模态混叠信号中单模态导波信号的提取。通过对板中的Lamb波S0、A0和A1混合模态仿真和实际信号处理试验表明,提出的方法无需频散补偿即可实现多模态混叠信号中单模态导波信号的有效提取。  相似文献   

2.
利用数值模拟和实验研究两种手段,从频散的角度分析了基于磁致伸缩效应的导波无损检测技术在圆管检测中的应用。参照数值计算结果,实验中采用不同频率激励纵向模态导波。通过实验对比发现,频率为f=20kHz左右时导波频散最小,且L(0,1)模态的导波适合用于管道检测。实验检测到的钢管不同孔径缺陷信号与数值模拟结果相吻合。  相似文献   

3.
超声导波在管道中传播模式有纵波、扭转波和弯曲波三种模式,由于扭转波在管道中传播具有非频散特性,在超声导波管道无损检测中得到广泛应用,但在管道中激发出扭转波的同时常常伴随着纵波的出现,导致超声导波检测信号难以识别和分析处理。针对这一问题,计算管道中超声导波传播频散曲线,通过控制扭转波激励频率在纵波的截止频率区范围内选取的方法,抑制纵波的产生。为了验证该方法的有效性和正确性,利用磁致伸缩导波无损检测装置对管道进行一系列不同激励频率的试验。研究结果表明:试验结果与理论结论相吻合,该方法为导波无损检测信号识别和工程应用提供了十分重要的理论依据和指导作用。  相似文献   

4.
基于超声导波的钢轨完整性检测方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
检测无缝线路钢轨的完整性对于保障高速铁路的安全运营具有重要的意义。本文提出了基于超声导波实现无缝线路完整性检测的技术方案,设计了功能样机,并进行了实际线路测试。首先,基于半解析有限元方法求解得到了我国无缝线路CHN60钢轨中超声导波的频散曲线,通过分析频率、模态数量、振型等信息选取了适于检测钢轨完整性的导波模态,采用激励响应求解方法确定了所选取模态的激励点和激励方向;根据理论获取的数据信息,在环形道试验现场进行了实际测试,在钢轨轨腰中心安装导波换能器,沿着钢轨纵向激励,可以激励出选取的导波模态,并通过衰减曲线测试,该模态在两公里处可以接收到2 m V以上的信号。经在大西高速铁路现场测试,系统可实现2 km区间的无缝线路钢轨完整性的在线监测。  相似文献   

5.
吴斌  邓菲  何存富  李隆涛 《仪器仪表学报》2006,27(Z3):2095-2097
针对超声导波具有的频散特性,导致导波缺陷检测信号波包在结构中传播时发生的展宽及衰减现象,研究了如何利用频散补偿技术对检测信号进行处理,将被频散特性淹没的缺陷信息再现,以实现缺陷形状的辨识问题.在进行实验验证的过程中,利用导波检测管道中的双槽形人工缺陷,通过改变端面加载的压电传感器位置,接收一组时域回波信号,根据波数-频率关系对导波传播过程中的频散进行补偿后,再现缺陷的形状特征.  相似文献   

6.
基于宽频激励的管型结构导波检测   总被引:3,自引:0,他引:3  
在对管型结构的导波检测过程中,需要预先选定导波模态,并确定激励频率,这个选择的过程存在一定的盲目性,而在多次反复试验中确定最佳激励模态和频率也会带来精力、时间、硬件资源的耗费问题。介绍一种信号处理方法,在宽频信号作为激励产生响应的基础上,采用该算法可获得其频带范围内任意单频激励信号对应的响应,有效解决了预先选定模态及频率的问题。同时,引入时频分析技术,根据缺陷反射回波能量的分布情况快速确定具有低模态转换响应的导波频率区间。通过对比各频率计算结果的模态和缺陷反射信号幅值,发现缺陷管中理想的激励导波频率在140~180 kHz,且缺陷反射回波幅值随激励信号周期增加而增加,但这种特点在低频表现得不明显。这为根据管中缺陷大小及类型,选择不同激励频率和周期提供了理论依据。  相似文献   

7.
针对结构损伤会影响超声导波传播,提出基于超声导波无损检测的结构健康监测方法。以内径为174mm、外径为194mm、材料为20~#碳钢的圆管结构为例,根据频散方程利用数值法求解其纵向模态以及周向Lamb波频散曲线。同时考虑其频散曲线和波的结构,确定激励频率中心频率为80kHz。在此基础上进行有限元仿真,验证圆管中导波的传播机理及特征。针对此频率圆管纵向模态导波以及周向Lamb波的频散特性、波的结构比较接近,且都与板中的Lamb波相似,从而提出了单点激励、多点接收,并采用椭圆定位的方法,实现圆管结构损伤定位。通过仿真和实验验证该方法对切槽、圆孔等损伤的识别效果,并对损伤定位误差的影响因素进行了分析。  相似文献   

8.
采用传统的单频信号作为污垢管道导波激励信号,须进行反复多频测试以确定最佳检测频率,存在一定盲目性以及时间、资源耗费等问题,提出一种宽单频转换算法,在采用宽频chirp信号作为污垢管道超声导波激励信号基础上,利用该算法对其响应信号进行后处理,可获得其频带范围内等同于单频信号激励时的响应,通过对比不同频率导波响应的能量分布及模态纯度确定最佳检测频率,并结合时频分析方法,根据污垢管道宽频响应能量分布情况快速确定合适的检测频率区间。仿真分析及实验研究表明:中心频率175 kHz最适合于所考察污垢管道导波检测,利用该方法确定污垢管道最佳导波检测频率的过程在减少采集时间的同时解决了多频测试的需要,为利用导波方法实现管道污垢由"点"到"线"的检测奠定了的基础。  相似文献   

9.
半解析有限元法求解钢轨中超声导波频散曲线   总被引:1,自引:0,他引:1  
钢轨中超声导波的频散曲线是采用超声导波技术进行无缝线路钢轨完整性检测的重要参考依据.通过传统的有限元模态分析方法,无法求解得到钢轨中超声导波完整的频散曲线,针对这一问题,采用了半解析有限元方法.求解时假设导波在钢轨中以简谐振动的方式传播,仅对钢轨的横截面采用三角形单元进行有限元网格划分,经理论推导得到超声导波在钢轨中传播的波动方程,通过求解特征方程,得到波数与频率的值,进而获取频率与相速度、群速度的关系,绘制出频散曲线.通过求解得到的特征向量还可以分析各导波模态的振动特性.实验结果表明,半解析有限元法求解得到的我国无缝线路CHN60钢轨的频散曲线与实际线路测试结果有很好的一致性.  相似文献   

10.
超声导波在管中传播的理论分析与试验研究   总被引:17,自引:3,他引:14  
采用分布式PZT传感器在管中激励和接收超声导波。根据在管状波导中传播的超声波具有频散现象及多模态特征,选择具有单一频率的特定信号激励超声波,使其频散最小;同时采用分布式传感器抑制不同模态的波型。其试验结果与理论预测相吻合。  相似文献   

11.
空心圆管中导波频散特性与检测频率选择   总被引:1,自引:0,他引:1  
频散是长距离管道导波检测中影响检测频率选择的重要因素。通过分析空心圆管中纵向模态导波的频散特性,探讨导波检测常用模态L(0, 2)和L(0, 1)的频率选择问题。根据导波频散现象,建立缺陷回波分辨距离与激励信号参数间的量化关系,分析检测频率优化选择问题。以导波频散引起的信号分辨距离为依据,计算不同几何尺寸管道中L(0, 2)和L(0, 1)导波非频散段的限制频率。结果表明,限定或最小化缺陷回波分辨距离,可获得最佳的导波激励信号周期及检测频率或频段。随着管道几何尺寸变化,得到L(0, 2)和L(0, 1)导波频散特性变化的几个重要结论。当管道内径壁厚比不小于4时,L(0, 2)导波低限频率与管道直径的乘积约为4.0 MHz•mm,高限频率与壁厚的乘积约为1.06 MHz•mm。对于小口径管中的L(0, 1)导波,其高限频率与直径的乘积约为0.81 MHz•mm。这些简单的函数关系为管道检测时快速确定非频散段频率范围提供参考。  相似文献   

12.
钢轨中导波传播模式的半解析有限元分析与试验测量   总被引:1,自引:0,他引:1  
导波传播模式分析是钢轨长距离导波检测和振动噪声控制的基础。钢轨中的导波传播模式可以通过波数频率关系和对应的结构形变来有效识别。应用半解析有限元法(Semi-analytical finite element method,SAFE),基于虚功原理构建导波在任意截面弹性波导中传播的控制方程,求解弹性波导中导波传播的频散曲线和结构形变。应用该方法求解0~8 k Hz频率范围自由状态CHN60型钢轨中导波传播的波数频散关系和结构形变,并讨论8个基本传播模式的特点。采用模态力锤及多传感器测量钢轨截面形变的模态分析试验方法得到钢轨横向和垂直振动模态导波的波数-频率系数,数值分析与试验结果相符合。  相似文献   

13.
针对传统超声在检测长达十余米的方钻杆时效率极端低下的问题,提出基于超声导波的方钻杆检测方法。首先,利用半解析有限元方法,求解方钻杆结构的频散方程并绘制频散曲线,选择群速度值最大、曲线比较平坦、频率范围为70 kHz~130 kHz的L(0,2)作为方钻杆的检测模态;其次,优化选取中心频率为100 kHz的L(0,2)模态作为激励信号,以尺寸为25 mm×5 mm×0.5 mm的环形压电晶片阵列作为传感器,提高L(0,2)模态在100 kHz的信噪比;最后,基于仿真和实验方法,采用L(0,2)模态导波对方钻杆进行了检测。结果表明,L(0,2)超声导波能够有效检测整根方钻杆面上和棱上的圆孔及槽型缺陷,提高了检测效率,为方钻杆的检测提供了一种新的思路和方法。  相似文献   

14.
提出了基于差分进化算法的改进匹配追踪方法,对超声导波无损检测信号进行处理。选取与超声导波回波信号时频特性相近的高斯调制余弦信号作为匹配原子,利用差分进化算法提高全局参数寻优的计算效率,通过叠加每个匹配原子分量的Wigner-Ville分布得到无交叉干扰项的时频分布。实验检测信号处理结果表明,该方法极大提高了参数搜索效率,通过时频分布特征对比可以有效地从回波信号中实现缺陷辨识。  相似文献   

15.
高频纵向超声导波在埋于无限大介质中钢杆的传播特性   总被引:3,自引:0,他引:3  
从理论上分析高频纵向超声导波在埋于无限大介质中钢杆传播的特性.根据在杆状波导中传播的超声波具有频散现象及多模态特征,选择特定频率下的单音频信号激励超声导波,使其衰减最小,能传播较长距离;能量速度最大,最先到达,从而可与其他速度较慢的模态相区别.说明此频率下的纵向模态可用来对埋于介质中的钢杆进行检测.同时建立试验系统,对直径22 mm、长度1 m的埋于水泥中的钢杆进行检测,并对结果进行时频分析,试验结果与理论分析相吻合.  相似文献   

16.
换流阀冷却系统中均压电极结垢检测是直流输电系统安全运行的必要保障。当前人工筛查的检测方法,有较大的盲目性且易造成系统漏水等故障。因此提出基于超声导波回波特性的在线结垢检测方法。选取频散小、传输距离长的L(0,2)模态导波作为激励信号,将电极结垢视为多孔介质并计算其特征参数,构建了流-固-声多物理场作用下的均压电极结垢检测模型,确定了最佳超声激励频率并仿真研究了0.2~1.0 mm厚度水垢对声波信号的反射与吸收特征,分析了L(0,2)模态导波与水垢交互过程中的模态转换过程,进而搭建实验系统,开展了水垢厚度为0.1~0.8 mm的实验验证工作。实验结果表明,基于L(0,2)超声导波回波特性的在线结垢检测精度达0.1 mm,为换流阀均压电极结垢检测提供了一种有效的方法。  相似文献   

17.
换热管作为换热器的关键部件之一,对其进行检测至关重要。扭转模态T(0,1)超声导波具有无频散特性,在换热管检测中有广阔的应用前景。采用ANSYS 有限元方法对T(0,1)模态导波检测进行仿真研究,为克服在ANSYS中Solid 164单元无旋转自由度而无法加载转角或扭矩的问题,提出了通过施加刚体转动间接激励T(0,1)模态导波的方法。研究了转角加载和扭矩加载两种不同激励方式,仿真结果表明两种激励方式都可以成功激励出T(0,1)模态导波,缺陷定位准确,且扭转模态导波在弯管中衰减更大。  相似文献   

18.
为了探究超声导波在90°弯头所引起的模态转换对检测造成的影响,采用试验和模拟的方法来研究导波在90°弯头中的传播特性,利用周向均布的长度伸缩型压电片激发导波L(0,2)模态,对弯头及弯头两端直管道上的周向裂纹缺陷进行位置识别;并对比直管道检测结果,研究弯头对导波模态转换的影响。采用小波分析对试验信号进行降噪处理,试验结果表明,L(0,2)模态导波穿过弯头后发生模态转换,产生弯曲模态F(1,2)。弯头处裂纹缺陷的检测敏感性与其所在位置有关,弯头外侧的检测敏感性最高;且检测敏感性与激发频率有一定关系,在较高的激发频率(120~130 k Hz)下,弯头两端直管道上裂纹缺陷检测的敏感性最高;当激发频率处于较低频率(80 k Hz)时,导波对弯头内侧缺陷检测的敏感度最高。因此提出采用不同激发频率的导波对带有弯头的管道系统进行综合检测的方法。利用数值模拟的方法对导波在弯头处的传播特性进行研究,模拟结果与试验结论相吻合。  相似文献   

19.
针对粘接界面质量难以检测与评价的问题,提出了一种空气耦合超声导波检测方法.基于超声导波在双层介质中传播特性和界面弹簧模型理论,推导出了不同粘接界面条件下的频散方程.通过对频散方程的数值求解,获得了刚性粘接、滑移粘接和完全脱粘3种粘接界面质量的频散曲线.频散曲线分析表明:在A0模态的一定频率范围内,界面趋于刚性粘接时导波...  相似文献   

20.
对带黏弹性包覆层管道中纵向模态的传播特性进行了理论分析,对纵向模态尤其是L(0,2)模态的频散和衰减特性进行了研究。建立了沥青包覆层管道的三维有限元模型,研究了激励频率、包覆层密度以及包覆层纵波衰减系数对导波传播的影响,并在带沥青包覆层钢管中进行激励和接收 L(0,2)模态的实验。结果表明,在低频范围下,随着激励频率和包覆层密度的增大,L(0,2)模态受沥青包覆层的影响也增加,其能量衰减也逐渐增大;对于带沥青包覆层的管道,其衰减频散曲线可用作模态选取的理论指导,采用低频纵向模态超声导波对带低密度包覆层管道检测时效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号