首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葛磊  杨飞  权龙  张红娟  闫政 《机械工程学报》2022,58(20):453-460
通过协调电液动力源转速和排量可以提升其能效,也是目前电液动力源的研究热点,随着变频和伺服技术的发展,变转速电液动力源也越来越多地应用在工业生产和航空航天装备中。目前,电液动力源实现流量控制可以采用变排量控制,也可以采用变转速控制,这两种控制方式已非常成熟,应用也较多。但在压力控制中,还往往只能依赖液压泵变排量控制结合压力反馈实现压力控制机能,采用变转速控制压力时,难以适应负载流量随机快速变化工况。为此,提出采用高效率的伺服电动机直接驱动定量泵,进一步提出基于转矩控制和转速补偿的压力控制方案,在负载压力变化时,无需控制电动机转速,具有动态响应快、系统结构简单的优点。通过理论分析和试验研究,结果表明,采用设计的方案可以很好地实现压力控制,在相同条件下,与常规恒压变量泵相比,压力响应时间从160 ms降低到50 ms,响应速度远超国际同类恒压控制泵。  相似文献   

2.
为克服内燃机驱动液压挖掘机动力源能效低、排放差、噪声大的问题,提出一种纯电驱负载敏感系统,采用变频异步电机作为动力源,为克服电动机高速轻载、液压泵小排量工况效率低的不足,设计了基于"排量预值"的转速-排量复合控制方案,尽可能使液压泵处于大排量状态,在流量高动态变化时,采用变排量控制,克服电动机动态响应的不足。构建了3种驱动方案下液压挖掘机机电液联合仿真模型,以动臂单动作及工作装置复合动作进行研究,对比分析不同驱动方案下液压挖掘机能耗特性,并分析"排量预值"对设计方案能效的影响。相比柴油机驱动和定速电机驱动,转速排量复合控制方法可以分别节约成本约63%和38%,随着"排量预值"的增大,纯电驱液压挖掘机的运行成本逐渐降低。  相似文献   

3.
注塑机电液控制系统能量效率对比研究   总被引:3,自引:0,他引:3  
在同一注塑机上,对采用异步电动机驱动定量泵、变转速异步电动机驱动定量泵、异步电动机驱动变量泵、变转速异步电动机驱动变量泵、交流伺服电动机驱动定量泵,5种电液控制方案加工同一制品的能量效率进行理论分析和试验对比。建立不同控制回路电动机和液压泵功率传输数学模型,绘制出能量特性曲线,分析对比注塑机工作在保压和冷却工况下,液压系统和电动机驱动系统功率消耗。研究结果证实,在部分负载和空载工况,异步电动机驱动定量泵系统存在大的溢流、节流损失,效率低;在此基础上引入变转速控制,包络系统所需的流量,可减少电动机功率消耗,提高系统效率,能量效率与异步电动机驱动变量泵相当;异步电动机驱动变量泵系统,可完全消除液压系统的溢流损耗,但电动机仍存在较大的空转损耗,在此基础上引入变转速控制,使电动机输出功率与液压负载相匹配,可进一步提高能量利用率26.5%;研究也表明,采用交流伺服电动机驱动的定量泵系统能量效率最高,较异步电动机驱动的定量泵系统节能88%,并且结构简单、动态性能好。  相似文献   

4.
变转速电液泵可以大幅提升液压动力源能效,但采用变转速电机驱动定量泵作为动力源时,通过控制转速实现压力控制,难以适应流量快速大范围变化的工况。为解决这一问题,采用电机转矩控制液压泵输出压力,实现动力源与流量无关的压力控制。与变转速控制相比,电机转矩属于控制内环,响应速度快;由于泵输出压力与其排量的乘积基本等于电机的输出转矩,控制更为直接。考虑到泵输出压力与电机输出转矩的非线性关系,在前馈控制的基础上,引入压力偏差反馈,实现压力的高精度控制。建立电机转矩控制模型及液压系统模型,对提出的控制方法进行验证。结果表明:采用电机的转矩控制压力,压力响应时间降低到40 ms,静态特性曲线回程误差小于2%。  相似文献   

5.
变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用   总被引:2,自引:1,他引:1  
提出用单台变速泵或伺服泵,结合蓄能器和旁通比例节流阀复合控制差动缸,改善注塑机能量效率的回路原理。液压泵仅在液压缸进给过程工作,蓄能器存储液压缸运动和制动过程的能量并用作液压缸回程的动力。比例节流阀控制液压缸回程的运动速度,通过新提出的流量校正原理,消除蓄能器内压力变化和负载对阀流量的影响,使液压缸的速度能够实时跟踪预定的轨迹。同正反向都采用泵驱动的原理相比,可消除回程中电动机制动产生的能耗。研究表明,新的回路原理可满足注塑机控制性能的要求。  相似文献   

6.
为适应挖掘机电动化的发展需求,提出一种开式容积与储能平衡协同控制液压挖掘机动臂的原理,通过改变伺服电机转速控制定量液压泵输出流量匹配负载需求,三腔液压缸的独立储能容腔连接蓄能器,将动臂下降时的重力势能转化为液压能存储并在举升动臂时再利用。研究中,分别测试了变量泵和伺服电机的动态响应速度,并测试了定转速异步电机驱动变量泵、变转速伺服电机驱动定量泵这两种动力源的能效,构建了液压挖掘机动臂储能平衡试验测试系统,对比分析了这两种动力源驱动挖掘机动臂的能效特性。结果表明,与异步电机驱动变量泵作为动力源相比,采用伺服电机驱动定量泵作为动力源驱动挖掘机动臂可降低峰值功率19.8%,一个周期内降低能耗58.7%,节能效果非常显著。  相似文献   

7.
基于可调速电动机的高动态节能型电液动力源   总被引:12,自引:0,他引:12  
对应用液压泵与转速可调电动机组成的电液动力源进行了分析和比较,研究了泵和电机的多种组合,给出了可满足不同功能要求的回路原理,对这一系统控制流量,压力的动静态性能进行了试验研究,揭示了该系统特有的内在运行规律,结果表明,新的原理方案较现有的变排量控制原理具有更高的效率,可作为高效,高动态的液压动力源。  相似文献   

8.
在普通曳引电梯运行过程中,当处于轻载上行和重载下行工况,曳引机处于发电状态,再生能量通过制动电阻消耗掉,不仅造成了能量的浪费,而且还增加了机房的散热负担。为解决上述问题,提出并设计了一种采用变排量液压泵/马达的电液混合驱动曳引电梯节能系统。该系统可将曳引机处于发电状态时产生的能量储存在蓄能器中,当电梯处于电动状态时,蓄能器能量释放,辅助曳引机驱动。研究中,在SimualtionX中建立了考虑蓄能器压力脉动及曳引机负载转矩变化的电-液联合仿真模型,并基于曳引机的运行特性,建立了变量泵/马达的流量动态模型。仿真获取了曳引机的能耗及转矩的特性,并与传统电梯及采用定排量泵/马达节能系统电梯的电机能耗进行比对分析。结果表明,采用变排量液压泵/马达来吸收和释放电梯运行时所产生的能量能够最大限度的达到能量的回收利用,与定排量节能曳引电梯相比,节能效果可达到10%~40%。  相似文献   

9.
在液压蓄能式风力机组故障或无风时,蓄能器组代替液压泵单独作为动力源驱动变量马达带动同步发电机继续发电。该文以600 kW液压蓄能式风力发电机组的蓄能发电系统为研究对象,建立蓄能发电系统的数学模型和仿真模型,针对蓄能器为变压力动力源和同步发电机对于变量马达恒转速输出控制的要求,提出基于容积调速的PID控制方法,并通过仿真和实验分析PID参数以及负载阶跃变化对系统转速刚度的影响规律。研究结果为蓄能发电系统的转速控制和负载加载提供理论依据与参考。  相似文献   

10.
侯思敏 《机电工程》2023,(4):494-501
传统的伺服电机驱动单变排量泵系统的稳定性较差,同时因其节流损失大,会引起系统的能耗过高,针对这些问题,对37 t液压挖掘机动臂差动缸系统的动臂能耗特性进行了研究。首先,根据双泵驱动动臂控制的工作原理,给出了“伺服电机和双定排量液压泵相结合,共同驱动动臂差动缸系统”的方案,推导出了差动缸的数学模型,利用UG软件建立了液压挖掘机的三维机械模型;然后,进一步在仿真软件SimulationX中,建立了37 t液压挖掘机动臂系统的仿真模型;最后,对变转速伺服定量泵直控差动缸系统的位置、速度控制特性以及能耗特性进行了仿真研究;为了验证上述仿真模型的有效性,搭建试验样机进行了实验,并将所得的实验结果与模型仿真结果进行对比分析。实验结果表明:在空载工况和带载工况下,动臂差动缸输出能耗分别降低了约40%和44%;与空载工况相比较而言,带载工况下的提升阶段,动臂运行时间缩短了1 s,下放阶段延长了0.5 s,整个工作周期时间减少了0.5 s。研究结果表明:系统的能耗与运行特性符合预期结果。  相似文献   

11.
伺服电动机定量液压泵驱动的注塑机电液控制系统分析   总被引:1,自引:0,他引:1  
对采用伺服电动机、定量液压泵闭环驱动的注塑机电液控制系统进行了研究,分析了泵输出流量控制原理、泵控差动缸回路原理。针对当采用恒定总压力预压紧时,电动机存在较大制动能耗的问题,提出负载适应的总压力曲线设定方法,获得了较好的效果。  相似文献   

12.
该文介绍新型拉削机床液压系统采用通流量大、能耗小的液压逻辑元件组构液压系统,分辨率高的检测元件检测液压系统的压力-流量参数、执行机构负载-位移参数的变量液压泵变频压力-流量复合控制和定量液压泵变频压力-流量复合控制的闭环伺服控制。  相似文献   

13.
选择双液压泵串联的组装方式,可达到泵高速运转并获得高压力效果,充分减小回路的节流损失。该结构完成压力分级叠加,获得更大的液压系统动力源输出压力,采用此动力源能够满足高压力与大流量的液压系统使用要求,进一步通过仿真方式对其脉动和能耗优化展开分析。结果表明:当负载增大后,串联泵控液压系统的流量脉动区间减小。串联泵控液压系统流量脉动随着负载增加变动不明显,表明本系统设计具有很好的稳定性。对电机转速进行调整后,串联泵控液压系统相对单泵系统的齿轮泵发生流量脉动显著降低;可使系统承受更高负载,使液压泵达到更低的输出流量;可以利用功率叠加的过程达到通过低功率电机获得大功率输出的目的。  相似文献   

14.
降低液压系统能耗,最直接有效的方法是采用无节流损失的闭式泵控技术,通过改变泵转速或排量,使泵输出流量和压力与负载匹配。但对于应用面超80%的非对称液压缸,存在液压泵两个油口流量与液压缸两腔流量不一致的问题,必须增设复杂的补油回路,并且当负载或运行速度方向发生变化时,需要补油回路快速准确切换,否则容易导致吸空和大的压力冲击,尤其是轻载工况,两腔压力接近时,系统稳定性更差。为了解决泵控系统的这些问题,创新设计出一种可平衡非对称液压缸流量的三配流窗口流量自平衡液压泵,结构上实现液压泵与液压缸流量始终一致,不需要增设复杂的补油回路即可实现液压缸平稳驱动。为验证新设计方案可行性,首先从原理上分析流量自平衡液压泵的工作特性,并设计制造出试验样机。在此基础上,研究采用制造的液压泵驱动非对称液压缸的运行特性。结果表明,采用新设计流量自平衡液压泵不需要增设复杂的大流量补油回路,即可平稳驱动非对称液压缸;当控制腔发生变化时,液压缸速度与转速之比变化非常小。  相似文献   

15.
鉴于混合动力系统或电动驱动系统中具有电量储存单元的特点,提出了一种基于电动机-闭式泵-液压蓄能器的液压挖掘机动臂节能驱动系统,通过液压蓄能器和高压侧相连,提高了液压蓄能器的工作压力范围和驱动系统的效率,分析了节能驱动系统的结构原理及工作特点。以减小蓄能器安装体积、保证动臂非对称油缸的流量匹配和延长蓄能器使用寿命为约束条件,以某20 t液压挖掘机的测试数据对节能驱动系统中液压蓄能器、大排量闭式泵、电动/发电机、小排量闭式泵等主要元件进行了参数匹配。针对所匹配参数建立节能驱动系统的AMESim数学模型进行分析,结果表明,该系统不仅实现了无阀控制和负负载的能量回收,同时蓄能器额定体积降低了50%,仍然可满足动臂非对称油缸两腔的流量差,且蓄能器压力波动满足工况的要求,相对传统动臂节流驱动系统,新型闭式节能驱动系统的节能效果达到了50%左右。  相似文献   

16.
针对变转速泵控液压系统在负载快速多变工况下,由于负载变化时流量和压力的强耦合特性,控制流量具有不确定、时变和高度非线性问题,导致其低速稳定性差、响应速度慢、调速精度低等技术难题的出现,采用简单PID线性控制器往往不能得到满意的控制效果。本文提出采用模糊控制实现典型工况下变转速液压动力源输出流量的伺服控制策略,MATLAB仿真及相应实验结果均表明:本文提出的模糊控制策略具有良好的实际控制效果,控制精度高,并且具有优于传统PID控制的鲁棒性。  相似文献   

17.
周鑫 《液压与气动》2012,(9):119-121
主要介绍蓄能器作为节能元件在首钢迁钢板坯火焰清理机液压系统中的设计及应用.清理机液压系统具有间歇性大流量的特点,采用蓄能器作为泵源辅助动力源,不但实现了系统功能,而且减少了工作泵的数量,大大降低了系统能耗.  相似文献   

18.
液力机械式装载机具有良好的自适应性,但其工况复杂,功率需求变化大,频繁的制动和装卸物料,造成发动机工作点和经济性变差,以及制动能量和势能浪费。为此,文中提出了一种适合于液力机械式装载机的新型并联式液压混合动力系统,该系统将泵马达、工作泵与机械系统并联,在能量控制阀组的控制下与高压蓄能器进行能量转换。提出了以发动机工作点、蓄能器压力状态、液压泵效率、液压马达效率为控制参数的多模式能量回收与再利用管理策略。基于MATLAB/Simulink搭建整车模型及控制策略模型,开展蓄能器压力和联合驱动控制参数对装载机油耗和能量平衡的影响分析。仿真结果表明:相比于原方案,新型并联式液压混合动力系统的发动机工作点得到优化,在泵马达、工作泵高效工作和蓄能器能量稳定的前提下,燃油经济性提高了18.44%。  相似文献   

19.
电液推进机构用于大型构件的移位装船作业,由夹紧模块夹持钢轨以提供反力支撑,通过推进液压缸完成构件的移位。电液推进机构采用变转速泵控方式,微控制器发出脉宽调制控制信号,作为变频器的输入指令信号,改变定量液压泵驱动电机的转速,以调节定量液压泵的输出流量,进而控制构件的移位速度。工程应用表明变转速电液推进机构具有效率高、响应快等特点,能够满足构件移位的作业需求。  相似文献   

20.
针对快锻时不足5%的传动效率造成的液压传动系统高能耗问题,提出由变频直驱泵与蓄能器结合起来而构成的新型泵-蓄能器复合动力源系统,并以泵口压力为控制目标,通过模糊自整定压力闭环控制策略,实现低装机功率下动力源的无溢流稳压输出,也为锻造液压机电液比例控制系统提供了稳定的动力输入。为减少节流损失,压下时利用差动回路。建立了泵头单元的数学模型,给出了确定蓄能器工作参数的基本原则。实验研究表明,基于变频调节的快锻液压系统位置误差可达0.2mm,较电液比例阀控系统总能耗降低65.3%,传动效率提高13.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号