首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王哲  沈雪红 《工具技术》2019,53(10):83-86
为探究冷却润滑条件对难加工材料镍基高温合金Inconel 718切削加工质量影响规律,基于Advantedge有限元软件,采用三种不同的冷却润滑方式,对Inconel 718材料进行干式切削、浇注式切削、低温冷风微量润滑切削仿真,对比分析不同冷却及润滑条件对切削力、切削温度、切屑形态、残余应力变化的影响规律。  相似文献   

2.
通过TB6钛合金高速铣削试验,测量观察加工表面粗糙度、表面三维形貌和表层微观组织等表面完整性特征,利用极差法分析切削参数对表面粗糙度影响的显著性,探讨冷却润滑条件对加工表面形貌和表面变质层的影响。研究表明:工艺参数对表面粗糙度影响程度依次为径向切深、切削速度、进给量和轴向切深;相比低温冷风加,微油雾润滑加工时钛合金表面粗糙度低,且表面无明显晶粒变形,表明加工表面塑性变形是影响粗糙度的主要因素。  相似文献   

3.
在金属切削过程中,切削区的冷却和切削温度的恒定对于提高切削质量有重要的意义。喷雾冷却是解决切削区冷却的理想方法,为了保证切削温度的恒定设计了一个温度控制系统。本文以气、液混合喷雾冷却切削的小型二流式喷嘴为控制对象,建立了喷嘴、流量控制阀、执行器以及红外线温度传感器的数学模型,采用PID控制,对冷风和冷却液混合调节切削温度的过程进行了优化仿真。结果表明此控制系统能很好的满足了控制切削温度的要求。  相似文献   

4.
不锈钢材料具有良好的性能,在航空、航天等领域得到广泛的应用.改善其加工特性、降低刀-屑间的摩擦阻力的试验研究已得到很大程度上的重视和实践,但对于摩擦性能的仿真分析以及冷却方式需进一步研究.本研究将使用Third Wave AdvantEdge有限元软件,基于316奥氏体不锈钢模拟干切削和高压冷却的切削进程,研究切削条件对刀-屑间的摩擦特性的影响.研究结果表明:切削参数的三个因素在两种切削环境下对刀-屑间的摩擦系数μ的影响程度是一致的,从大到小依次为:进给量、切削速度、背吃刀量;在同样的切削参数下,对于主切削分力、进给抗力、刀-屑间的摩擦系数,在高压冷却(HPC 200 bar)条件下与干切削(DRY)相比数值有所降低.  相似文献   

5.
传统金属切削仿真往往局限于二维仿真。本文基于有限元软件ABAQUS/Explict建立了三维斜角切削模型,并对45钢的切削过程进行了数值模拟。试验结果表明,在刀具切削过程中,刀尖接触区会发生严重的不均匀塑性变形。并且在刀具切削金属时,由于前刀面常处于高温高压的状态极易发生月牙洼磨损,同时刀具刃倾角的存在会使得切屑发生一定的横向卷曲。模拟切屑外形与试验切屑结果一致,另外模拟切削力数值与实际车削力理论公式计算结果吻合。模拟结果对金属切削加工及刀具理论研究具有重要的指导意义。  相似文献   

6.
切削振动条件下的表面轮廓仿真分析   总被引:6,自引:0,他引:6  
对在切削振动条件下得到的表面轮廓进行仿真,分析其表面空间频谱,提出根据加工参数、切削振动与表面微观形貌的关系优选主轴转速以优化加工表面质量的方法  相似文献   

7.
不同冷却条件下激光焊接接头性能研究   总被引:1,自引:0,他引:1  
分别利用焊后空冷和随焊水冷两种随焊冷却方式对2 mm厚低碳钢板进行光纤激光焊接。选择不同激光功率、焊接速度和离焦量进行试验。分析焊后空冷条件下和随焊水冷条件下两种焊接接头成形、金相组织和显微硬度。研究结果表明,随焊水冷条件下的焊缝宽度和热影响区宽度分别小于焊后空冷条件下的焊缝宽度和热影响区宽度;在热输入相等和正离焦的前提下,熔宽随着离焦量的减小而增大。两种冷却条件下的焊缝组织为板条状先共析铁素体和珠光体。随焊水冷条件下热影响区晶粒尺寸较焊后空冷下的晶粒有明显细化。空冷条件下焊缝中柱状晶的生长方向与焊缝中心线成70°~80°,而随焊水冷条件下的柱状晶生长方向几乎与焊缝中心线垂直。焊后空冷和随焊水冷的焊缝区域平均硬度分别为316.7 HV0.2和331.5 HV0.2,均高于母材硬度平均值181.8 HV0.2;同时,随焊水冷条件下焊缝硬度稍高于焊后空冷条件下的焊缝硬度。  相似文献   

8.
对难加工材料钛合金进行冷风油雾切削实验,将实验结果与常温干车、常温喷雾和大量油剂喷淋的冷却方式进行对比研究。通过实验结果分析,在采用相同切削参数及刀具加工时,低温喷雾冷却的刀具使用寿命最长,常温干车的刀具使用寿命最短。同时,采用低温喷雾冷却方法,加工表面粗糙度值也有所下降。  相似文献   

9.
为了揭示不同冷却方式对钛合金切削过程的影响规律,以硬质合金刀具切削钛合金Ti6Al4V为研究对象,采用Johnson-Cook材料本构模型,运用金属切削仿真软件Advant Edge进行了高压冷却、浸入式冷却以及局部喷射冷却的切削仿真分析。仿真结果表明:三种冷却方式中,刀具高温区主要分布在切削刃附近区域;浸入式冷却中切削刃温度和应力最低、切削力最小;浸入式冷却切削性能最好,其次为高压冷却,局部喷射冷却最差。研究结果可为钛合金切削加工时选择有效的冷却方式提供理论指导。  相似文献   

10.
建立正交切削加工过程中的传热数学模型,基于Lagrange描述法和有限元法对正交切削的温度场进行数值计算,应用Deform有限元分析软件对不同加工材料、不同切削前角以及不同切削参数下的切削过程进行仿真,得出影响温度场的变化规律.研究结果表明,切削过程的热量主要由材料的塑性变形和切屑与刀具的摩擦产生的,在不改变材料属性的前提下,通过调整切削参数和刀具的形状来降低切削过程的温度,并给出具体刀具前角大小的温度影响分布曲线,为切削加工过程的优化提供参考依据.  相似文献   

11.
汽雾冷却切削技术可以减少切削过程中的切削力,改善材料的切削性能,提高刀具的使用寿命.文中建立了汽雾冷却下切削GH4169有限元仿真模型,在仿真模型中分析切削力随切削参数变化的规律.其次,在汽雾冷却条件下,使用陶瓷刀片车削GH4169.对比分析仿真数据与试验结果,验证换热系数可提高仿真分析的准确性,为汽雾冷却下高效切削G...  相似文献   

12.
实现汽车恒速下坡控制对于提高汽车运输效率和安全性具有重要意义。针对加装液力缓速器汽车恒速下坡控制的特点,通过分析汽车下坡缓速制动过程,建立汽车下坡缓速器制动仿真模型。根据缓速器缓速制动原理设计了基于Matlab/Stateflow逻辑控制的恒速控制器,在Matlab/Simulink中选取混凝土、卵石、砂石等不同路面条件对汽车恒速下坡过程进行仿真分析,得出了充液率调节值对车速变化的影响关系,得到了汽车在不同路面条件下实现恒速制动的充液率合理调节取值。仿真结果表明液力缓速器单独作用于汽车制动可以实现恒速下坡控制,路面条件与液力缓速器充液率调节值大小对恒速控制性能有着重要的影响。  相似文献   

13.
数控车床切削仿真的研究   总被引:8,自引:0,他引:8  
针对数控车床加工切削仿真系统的开发,分析了几何仿真过程中的几个重点问题,并与之将切削力、切削功率等物理量仿真相结合,实现了切削模拟加工过程中切削力、切削功率曲线与刀具切削的同步,最后给出了一个切削加工仿真实例。  相似文献   

14.
气体射流冷却切削   总被引:6,自引:0,他引:6  
介绍气体射流冷却方法及其应用试验.试验表明,气体射流冷却在少、无切削液冷却切削中,具有21世纪绿色制造发展所需要的绿色加工的特点 .  相似文献   

15.
在金属加工中,工件和刀具之间产生的热量,只在很小的区域内,所以只要对刀具和工件的切削区进行冷却,就可以延长刀具使用寿命,提高高速切削效率。同时,还可解决复杂零件加工热膨胀问题。喷雾冷却是由液体泵,将乳化油或化学液的水混合液同气体一起,用一定压力,由喷嘴喷出,形成一种压缩气体和液体混合雾。喷嘴距切削点大约25毫米处,并随刀  相似文献   

16.
切削区的喷雾冷却   总被引:2,自引:0,他引:2  
喷雾冷却润滑对高速切削、强力切削和超高速切削是一种有效的冷却方式.可提高刀具寿命,降低环境污染。新式喷雾冷却装置具有放大气流合、结构简单、勿需专门维护、不要水泵和节省气源等优点,可提高工件加工精度,特别适于有色金属的切削加工,并能节省冷却润滑费用。这种新式喷雾冷却装置也可用于零件热处理的冷却。  相似文献   

17.
18.
为实现清洁切削技术,将Al2 O3包覆CaF2复合粉体作为添加相,采用真空热压烧结工艺制备了一种Ti(C,N)基自润滑金属陶瓷刀具(TMC刀具),研究了Ti(C,N)基金属陶瓷刀具在微量润滑作用下切削300M钢的切削性能,结果表明:双重润滑与干切削方式相比,其三向切削力FX、FY、FZ分别减小了36.8%、13.1%和...  相似文献   

19.
运用超声波振动驱动PCD刀具对Stavax工具钢进行切削试验,并对比研究普通切削和超声波振动切削的加工工件表面粗糙度和刀具磨损试验结果,获得超声波振动切削时工件表面粗糙度、刀具磨损与加工参数之间的变化规律.  相似文献   

20.
进行涂层硬质合金刀具高速切削TB6钛合金试验,对不同冷却润滑条件下钛合金切屑形态的表面形貌及几何特征进行研究,对锯齿形切屑的绝热剪切带微观组织进行分析。研究表明,切屑自由端出现的毛边随着切削速度的增加,其几何尺寸增大,频率增加,锯齿化程度增加;随着冷却润滑条件的改善,毛边现象趋于减弱。绝热剪切带的生成及演化是产生锯齿形切屑的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号