首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用二氯亚砜对氧化石墨烯进行表面化学修饰得到酰氯化石墨烯,然后通过原位聚合法与酚羟基封端的聚苯砜反应制备了一系列不同石墨烯含量的石墨烯/聚苯砜纳米复合薄膜。研究石墨烯对该复合薄膜的微观形貌、力学性能、介电性能的影响。结果表明:酰氯化石墨烯可使得石墨烯与聚苯砜基体之间共价结合,提高石墨烯在基体树脂中的分散稳定性和界面相容性,进而有效地改善聚苯砜的力学性能和介电性能。石墨烯/聚苯砜纳米复合薄膜的介电常数和介质损耗因数随着石墨烯含量的增加呈先慢后快的增长趋势;石墨烯质量分数为3%的复合薄膜的介电常数高达18,是纯聚苯砜薄膜的介电常数的4.5倍;同时复合薄膜还具有较低的介质损耗因数和良好的介电-频率稳定性。  相似文献   

2.
高储能密度全有机复合薄膜介质材料的研究   总被引:1,自引:1,他引:0  
电容器储能以其轻便、高效、环保等特点正在逐步引起人们的重视。为制备高储能密度的电容器介质材料,研究以聚偏氟乙烯(PVDF)为基体,以纳米尺度的导电聚苯胺(PANI)为填料,采用溶液法及后续的球磨工艺制备了高储能密度的全有机复合薄膜介质材料。研究了添加物含量、频率等因素对复合介质材料介电性能的影响。发现当PANI体积分数达到0.05时(略高于渗流阈值fC=0.041),复合薄膜的介电常数在100 Hz条件下高达456,击穿场强为60 MV/m,储能密度达到了7.2 J/cm3,与PVDF基体相比提高了3倍多。另外还发现即使在渗流阈值附近,复合薄膜介电性能仍具有一定的频率稳定性。介电常数在低频范围(102~104Hz)内基本保持不变。利用SEM对复合薄膜的表面形貌进行了分析,发现有机填料PANI粒子在PVDF基体内有很好的分散性。另外利用XRD分析了复合薄膜的晶体结构,发现该制备工艺条件下所得复合材料基体主要以β-PVDF形式存在,这有助于发挥PVDF基体的功能性。渗流阈值理论可用来解释介电常数随添加物含量和频率的变化规律。研究结果表明,该制备工艺可得到适用于较宽频率范围的高储能密度复合薄膜。  相似文献   

3.
为了研究方波条件下纳米Al2O3对PI膜介电性能的影响,将粒径为60 nm的Al2O3纳米粒子作为无机填料添加到PI基体中,制作了掺杂量质量分数为1%,2%,5%,7%,10%的PI薄膜。测量了PI/Al2O3薄膜耐电晕性能和介电温度谱以及介电频谱,并用SEM镜观察了放电前后PI/Al2O3薄膜微观形貌。研究结果表明:Al2O3纳米粒子的掺入提高了复合薄膜的耐电晕性能;PI/Al2O3复合薄膜的相对介电常数(εr)与介质损耗正切(tanδ)值随着Al2O3含量升高而升高,其tanδ值随着频率的增加先减小后增大,在200 Hz处有最小值。在同一频率下,PI/Al2O3薄膜εr和tanδ表现出对温度的依赖性,tanδ在70℃与170℃附近出现两个峰值;且随着Al2O3含量的增高,tanδ介电峰向高温方向移动。PI基体中高分子链缠结在纳米粒子周围,纳米粒子所引入的界面以及在聚合物中表现的"钉扎效应"是影响PI/Al2O3复合薄膜介电性能的主要原因。  相似文献   

4.
对钛酸钡(BT)纳米粒子进行了表面改性,采用原位聚合法将钛酸钡与聚酰亚胺复合制备了高介电BT/PI复合薄膜,为了进一步提高介电性能,将第三组分炭黑掺入其中,并对其进行了红外光谱、扫描电镜(SEM)分析和介电性能测试。结果表明:与未改性的复合薄膜相比,改性后纳米粒子在基体中分散更加均匀,复合薄膜的介电性能明显提高,可用于制备嵌入式电容中的电介质材料。  相似文献   

5.
选用石墨微片为填充材料,以PVDF为基体,采用流延法制备PVDF基介电复合薄膜。将热膨胀后的石墨微片进行表面化学改性得到改性石墨微片。将改性石墨微片添加到PVDF基体中,制备了石墨微片/PVDF复合薄膜,对复合薄膜的微观结构、结晶性能、热力学稳定性以及介电性能进行测试,分析了石墨微片对复合薄膜性能的影响。结果表明:石墨微片直径为微米级且能较好的分散在PVDF基体中,石墨微片的引入对PVDF薄膜的相变影响不大。热分析显示,石墨微片的加入提高了复合薄膜的热稳定性。宽频介电谱测试表明,在100 Hz测试频率下,当石墨微片含量≤3%时,复合薄膜的介电常数最高为36。当石墨微片含量提高至5%时,复合薄膜的介电常数突增至6.5×105。  相似文献   

6.
分别以钛酸钡纳米棒、钛酸钡纳米颗粒和钛酸钡微米颗粒作为填料,以聚偏氟乙烯(PVDF)作为基体,制备了3个系列高介电复合材料,并用阻抗分析仪对复合材料的介电性能进行了分析,研究填料形状对聚合物复合材料介电性能的影响。结果表明:随着钛酸钡填料体积分数的增加,复合材料的介电常数均明显增加,同时介质损耗也保持在较低水平。当电场频率为1 kHz、填料体积分数为40%时,钛酸钡纳米棒/PVDF的介电常数在3个系列复合材料中最高,达到24.1。  相似文献   

7.
采用两步水热法制备了高长径比核-壳结构Ag@MoS_2纳米线,以P(VDF-HFP)为基体、Ag@MoS_2纳米线作为填料,在不同填充量下通过溶液共混和流延法制备了复合材料薄膜。采用SEM、TEM、XRD、XPS等对Ag@MoS_2的微观结构、尺寸、化学成分进行表征,并利用SEM和阻抗分析仪对复合材料的微观形貌和介电性能进行表征。结果表明:Ag@MoS_2填料在聚合物基体中分散均匀,且两相之间的界面结合效果良好。随着填料含量的增加,复合材料的介电常数逐渐增大,当Ag@MoS_2的质量分数为35%时,1 kHz下复合材料的介电常数为67.2,介质损耗因数仅为0.15,且复合材料的介电常数和介质损耗呈现出较弱的频率依赖性。  相似文献   

8.
为了研究填充相和结构对聚偏氟乙烯基聚合物(PVDF)介电和储能特性的影响,采用溶液铸造和热压工艺制备了含有二维氮化硼薄片和钛酸钡颗粒的单层复合薄膜及三明治结构复合薄膜。采用X射线衍射和扫描电子显微镜分析了复合薄膜的晶体结构和形貌,利用宽频介电谱仪和铁电综合测试仪获得了薄膜的介电性能和储能特性。结果表明,制备的三明治结构复合薄膜具有优异的性能,其中BN-PVDF/BaTiO_3-PVDF/BN-PVDF三明治结构复合薄膜在10 Hz时的相对介电常数为13,放电能量密度在电场强度为350 MV/m时高达6.2 J/cm3,是单层BaTiO_3-PVDF复合薄膜的1.6倍;其击穿场强高达370 MV/m,是BaTiO_3-PVDF的1.5倍;且其放电效率为0.55。总结得出,这是因为三明治结构中上下2层引入的BN 2维薄片提高了复合介质击穿强度,缓解了电极化强度过早饱和;而中间层BaTiO_3的引入增强了复合介质的极化特性,从而获得了具有优异介电性能和储能特性的PVDF基复合薄膜。  相似文献   

9.
选用芳纶纳米纤维(ANF)作为耐高温基体,并填充钛酸钡纳米纤维(BTNF)制备ANF/BTNF纸基复合薄膜,研究不同BTNF填充量对复合薄膜介电性能的影响。结果表明:ANF/BTNF复合薄膜的厚度约为10μm。当BTNF质量分数为0~20%时,随着BTNF填充量的增加,复合薄膜的介电常数和电气强度均提升。当BTNF的质量分数增大到40%时,复合薄膜的介电常数显著提升,但是在高频区快速降低,介质损耗因数显著增大,同时复合薄膜的电气强度略微下降。因此,BTNF质量分数为20%的ANF/20BTNF复合薄膜综合介电性能最佳,在1 kHz时介电常数达到4.78,电气强度为8.90 kV/mm。  相似文献   

10.
聚酰亚胺/纳米氧化钛复合薄膜的介电性能研究   总被引:5,自引:5,他引:0  
采用原位分散聚合法制备了聚酰亚胺/纳米TiO2复合材料。通过透射电镜研究了纳米TiO2粒子在聚酰亚胺基体中的分散状态,并在此基础上研究了纳米TiO2填加量对该复合材料介电性能的影响。结果表明,随着纳米TiO2含量的增加,聚酰亚胺/纳米TiO2复合材料的体积电阻率和电气强度出现不同程度的劣化,并造成了介电常数和介质损耗因数的增加,但是材料的耐电晕性能显著增强,在12MV/m的电场强度下,纳米TiO2含量15%的PI薄膜的耐电晕寿命为纯PI薄膜的40多倍。  相似文献   

11.
为提高聚酰亚胺纳米复合薄膜的耐电晕性能,利用大气压空气等离子体和硅烷偶联剂对纳米粒子表面进行改性,通过原位聚合法制备聚酰亚胺纳米复合薄膜,利用傅里叶红外光谱(FTIR)分析等离子体处理对纳米粒子表面化学键的影响,利用扫描电镜(SEM)分析了纳米粒子在薄膜中的分散特性,测试了聚酰亚胺纳米复合薄膜的介电频率谱和耐电晕时间。研究结果表明:纳米粒子经过等离子体处理后,通过氢键在其表面吸附大量的硅烷偶联剂,薄膜内团聚体颗粒大小下降了约60%;复合薄膜的介电常数有所下降,但电导损耗有所增加,纳米复合薄膜耐电晕寿命提高了28.12%。研究发现,等离子体改性纳米粒子后,增强了纳米粒子和聚合物基体的相互作用,提高了界面的耐电晕能力,同时增加了薄膜内界面体积分数,使界面区域介电双层结构发生重叠,提高了薄膜的电导率,促进薄膜内部电荷的消散,从而提高了薄膜的耐电晕寿命。  相似文献   

12.
通过溶剂流延成膜法配合超声辅助分散制备一种二氧化钛/多壁碳纳米管/聚芳醚腈(TiO2/MWCNT/PEN)三组分复合材料薄膜。对纯PEN薄膜和TiO2/MWCNT/PEN三组分复合材料薄膜的脆断面形貌进行表征,对比分析了TiO2/PEN二组分复合材料薄膜、MWCNT/PEN二组分复合材料薄膜以及TiO2/MWCNT/PEN三组分复合材料薄膜在50 Hz~100 kHz频率内的介电性能。结果表明:超声分散技术使TiO2和MWCNT在PEN基体中分散均匀;同时加入20% TiO2和3% MWCNT的TiO2/MWCNT/PEN复合材料薄膜的介电常数达到26(50 Hz),说明这两种填料对复合材料介电常数的提高有协同作用。  相似文献   

13.
采用原位聚合法制备了PI/TiO_2和PI/SiO_2纳米复合薄膜。研究质量分数均为10%的两种纳米掺杂对PI复合薄膜介电性能的影响,采用光刺激放电电流法(PSD)表征两种纳米颗粒对PI复合薄膜陷阱能级的影响,通过陷阱理论对介电性能的影响机制进行探讨。结果表明:TiO_2和SiO_2纳米掺杂提高了PI的电导率和介电常数,介质损耗相应增加,耐电晕寿命明显提高,电气强度虽有所下降但仍满足实际需要。两种纳米掺杂都在PI基体中引入了大量的浅陷阱,PI/TiO_2和PI/SiO_2复合薄膜的陷阱能级范围分别为1.83~2.85 e V和2.13~2.83e V,且SiO_2纳米颗粒引入的浅陷阱密度低于TiO_2纳米颗粒。在此基础上,通过陷阱理论分析了两种复合薄膜的耐电晕老化机制。  相似文献   

14.
在3,3',4,4'-联苯四甲酸二酐(BPDA)-4,4'-二氨基二苯醚(ODA)型聚酰亚胺(PI)基体中引入2-甲基咪唑钴(ZIF-67)作为纳米填料,制备具有“三明治”结构的PI/ZIF-67三层复合薄膜.采用FTIR、XRD、SEM对ZIF-67及PI/ZIF-67三层纳米复合薄膜的结构进行表征,研究ZIF-67含量对复合薄膜热稳定性、介电性能的影响.结果 表明:当ZIF-67质量分数在10%以内时,PI/ZIF-67三层复合薄膜的初始分解温度大于500℃,具有较好的热稳定性;PI/ZIF-67三层复合薄膜的介电常数明显低于PI,当ZIF-67的质量分数为10%时,PI/ZIF-67三层复合薄膜的介电常数下降幅度可达50%;当ZIF-67质量分数为5%时,介电常数下降幅度达到71%.与不含ZIF-67的纯PI相比,ZIF-67质量分数低于10%的PI/ZIF-67三层复合薄膜的介质损耗略有提高.  相似文献   

15.
通过原位聚合法制备了不同BN掺杂含量的聚酰亚胺基微纳米复合材料,使用扫描电镜、偏光显微镜、电气强度测试仪、介损及介电常数测量系统、皮安表和耐电晕老化实验装置对不同掺杂含量的微纳米复合PI薄膜的结构和电性能及耐电晕老化性能进行了研究。结果表明:随着BN微纳米颗粒掺杂量的增加,复合PI薄膜的电气强度先增大后减小,当掺杂含量为1%时,交流电气强度达到最大值219.6 kV/mm。掺杂BN后,复合PI薄膜的介电常数和介质损耗都有所增加,在高温下的电导电流小于纯PI薄膜。随着BN掺杂量的增加,复合PI薄膜的耐电晕老化性能逐步提升,在掺杂含量为20%时,复合PI薄膜的耐电晕老化时间是纯PI薄膜的116.7倍。  相似文献   

16.
用溶胶-凝胶法制备了纳米氧化硅(SiO2)及纳米氧化铝(Al2O3)溶胶,并将二者掺入到聚酰胺酸基体中,亚胺化得到聚酰亚胺(PI)/SiO2/Al2O3杂化薄膜,采用红外光谱、原子力显微镜、热失重及阻抗分析仪对薄膜的结构及热性能、介电性能进行表征。结果表明,SiO2和Al2O3粒子呈纳米级均匀分散在薄膜基体中,并且与有机相存在键合;材料的热分解温度有所提高;介电常数随无机含量的增加而增加。  相似文献   

17.
为研究纳米颗粒对环氧树脂(epoxy resin,ER)介电和空间电荷特性的影响,以环氧树脂为基体材料,纳米二氧化硅(silicon dioxide,SiO_2)为填料,制备了SiO_2纳米颗粒质量分数在0~5%范围内的ER/SiO_2纳米复合电介质。测试和研究了复合电介质在不同频率下的介电特性和直流场强为33 k V/mm下的空间电荷行为。当SiO_2纳米颗粒的质量分数为0.5%和1%时,复合电介质可以获得较低的介电常数和介质损耗,同时有效抑制了同极性空间电荷在电极界面处的积累及注入;当SiO_2纳米颗粒的质量分数为2.5%和5%时,复合电介质在低频区域介电常数和介质损耗均比纯环氧树脂高,但在高频区域变化不明显,同时在电极界面处的空间电荷积累显著增加、注入明显。研究结果表明:纳米颗粒含量较低时ER/SiO_2复合电介质介电和空间电荷性能得到提高,是由于受到环氧树脂基体和纳米粒子之间的界面区影响,界面区是改善环氧树脂纳米复合材料电性能的关键因素。  相似文献   

18.
聚乙烯是一种重要的绝缘材料,但较低的热导率限制了其进一步应用。向聚乙烯基体中添加高导热无机颗粒可有效提高复合材料整体的热导率,同时会对其耐电弧性和介电性能产生影响。鉴于此,分别以微米氮化硼和微纳米混合氮化硼颗粒作为填料,制备了不同填料质量分数的两类聚乙烯/氮化硼复合材料。除了对各复合试样的热导率进行测量,还通过高压电弧起痕实验分析了各试样热导率对其耐电弧性的影响,最后对各试样的相对介电常数和交流击穿强度进行了评估。结果表明:当氮化硼填料的质量分数由0增加至40%,复合试样的热导率不断增大,耐电弧性随之增强。但是基体中填料质量分数较高时(20%),复合试样的相对介电常数明显增大、交流击穿强度显著下降。此外,基体中填料的质量分数相同时,微纳米混合氮化硼颗粒填充的复合试样具有更优异的导热性能、耐电弧性和介电性能。  相似文献   

19.
聚丙烯(PP)过低的介电常数已经无法满足下一代电力电容器对于高储能密度电介质材料的需求。制备具有高介电常数的纳米复合介质是有望提高电介质材料储能密度的有效手段。本文以PP为基体,以锆钛酸钡(BaZr0.2Ti0.8O3,简称BZT)纳米颗粒为无机填料,制备BZT/PP复合介质,并利用硅烷偶联剂KH550与马来酸酐(MAH)之间的共价键作用提高纳米颗粒在聚合物基体中的分散性。对复合介质的微观形貌及晶体结构进行表征,并系统研究复合介质的介电性能、直流电气强度及储能密度。结果表明:BZT纳米颗粒在聚丙烯基体中分散均匀,并且显著提升了复合介质的介电性能与储能特性,BZT质量分数为15%的复合介质具有3.19(0.1 Hz)的介电常数,相比纯PP的介电常数提高了40.5%,并且介质损耗因数保持在10-2数量级的较低水平。在储能密度方面,当BZT质量分数为5%时,复合介质的最大储能密度为2.008 J/cm3,相比于纯PP(1.775 J/cm3)提升了13.1%。  相似文献   

20.
采用改进的Hummers法制备氧化石墨烯(GO),以γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)为改性剂制得改性GO(mGO)。采用改进的St?ber法制备二氧化硅空心球(SHS),以3-氨基丙基三乙氧基硅烷(APTES)为改性剂制得改性SHS(mSHS)。将mGO和mSHS复合制备mSHS-mGO复合物,再以4,4′-二胺基二苯醚(ODA)和均苯四甲酸二酐(PMDA)为单体,采用原位聚合法制备mSHS-mGO/聚酰亚胺(PI)复合薄膜,研究mSHS-mGO复合物对PI薄膜力学和介电性能的影响。结果表明:5%mSHS-0.3%mGO/PI复合薄膜的介电常数为2.26(105Hz),相比于纯PI薄膜(3.04,105Hz)降低了26%。3%mSHS-0.3%mGO/PI复合薄膜的拉伸强度和断裂伸长率为86.92 MPa和13.87%,分别比纯PI薄膜(79.00 MPa和9.00%)提高了10%和54%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号