首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
设计了一种嵌入式薄膜热电偶的刀具,以实现在切削过程中对刀具瞬态温度的实时测量。以刀具的前刀面作为基底来镀制薄膜,通过磁控溅射法在刀具前刀面制备了Al_2O_3绝缘膜、NiCr/NiSi薄膜热电偶以及Si_3N_4保护膜,最终制成了可以进行切削加工并能够实时测量切削温度的刀具。文中主要介绍了电极NiCr薄膜、Al_2O_3绝缘膜的制作过程及一些相关性能的检测,随后利用SolidWorks和DEFORM-3D对刀具进行了三维建模和切削过程的仿真模拟,得到了刀具的温度场分布。  相似文献   

2.
用解析法计算高速切削单涂层刀具瞬态温度分布   总被引:4,自引:0,他引:4  
为研究涂层在切削中对刀具温度的影响,为设计刀具涂层提供理论依据,分析高速切削过程中切削热的产生和刀具边界情况,建立单涂层刀具热传导物理模型和数学模型,用数学解析的方法推导出正交高速干切削过程中单涂层刀具体内部的温度分布公式。利用推导出的温度公式对TiN、TiC、Al2O3涂层刀具的切削温度分布进行解析计算,并将解析计算结果与数值分析结果进行比较。结果表明,解析计算结果与数值计算结果吻合很好;涂层材料与基体材料的热物理性能以及涂层的厚度对刀具的温升有重要影响;随着热流密度的增加,涂层厚度对刀具内部的温度影响增大。  相似文献   

3.
由于切削测温温感器无法直接接触切削区,故在铂铑丝表面喷涂耐热绝缘层制作耐热热电偶,把表面覆盖耐热绝缘层的热电偶埋入硬质合金粉末,压制、烧结成热电偶测温刀片。通过恒温箱测温实验判定热电偶的测温性能,用性能正常的热电偶测温刀具进行切削测温实验,测温实验结果及切削刀具镜测结果表明,热电偶测温刀具能直接、可靠地进行切削区温度的测量,但是用此工艺制作的刀具切削寿命较短;实验结果还表明直径越大的铂铑丝制作的热电偶测温刀具的成品率越高,但是铂铑丝直径越大,刀具寿命越短;实验进一步揭示切削区内各点的温差较大,但是一次切削切削区温度场处于稳态时切削测温点的温度是稳定的,温度场处于稳态时切削温度的变化能迅速反映刀具的磨损状态的变化。  相似文献   

4.
5.
智能刀具研究综述   总被引:1,自引:1,他引:0  
智能刀具根据加工中具体用途的不同,可实现对切削状态在线监测、数据处理、切削过程优化控制等功能,通过智能刀具的使用可改善加工过程,提高加工质量与效率,到目前为止学者们对于智能刀具的研究已取得大量研究成果.对智能刀具切削状态监测和切削过程控制两个方面的研究进展进行论述,梳理了学者们应用智能刀具对切削力、切削温度、刀具振动进...  相似文献   

6.
面向切削状态监测和加工工艺智能优化对切削温度在线精确感知的需求,利用负温度系数热敏陶瓷的阻温特性和结构陶瓷的高耐磨性,设计了一种基于异种陶瓷复合的新型温度感知刀具,并通过微波烧结技术制造了该智能刀具,最后基于刀具上3个测温点的温度值对刀具切削区温度场进行了重构。该温度感知智能刀具最高感知温度>700℃,响应迅速。在vc=150 m/min、ap=1.0 mm、f=0.075 mm/r干式车削镍基高温合金GH4169时,刀具在25 s达到热平衡,刀具上3个测温点的温度值分别为425℃、204℃和188℃,刀具最高温度出现在前刀面靠近主切削刃位置,最高温度达1579℃,整个刀尖区域的温度不低于1 000℃。  相似文献   

7.
针对化爆材料的切削特点,研制出一种集切削和测温功能于一体的NiCr/NiSi薄膜热电偶快速响应温度传感器。用多弧离子镀将NiCr/NiSi热电偶薄膜直接镀于高速钢刀头内。薄膜热电偶电极与高速钢之间采用最先进的多层镀膜法绝缘,即用微波ECR等离子体源增强射频反应非平衡磁控溅射技术首次成功在W18Cr4V高速钢基底上沉积绝缘性能良好的SiO2膜。对研制的薄膜热电偶温度传感器进行了静态和动态标定,结果表明传感器在0- 600℃测温范围内具有很好的线性和热稳定性,而且响应快,时间常数小于0.8 ms。热电偶薄膜与绝缘膜、绝缘膜与基体之间有足够的附着强度。该温度传感器已安装在现场使用,为国防工业部门的高效、安全生产提供了有力的保障。  相似文献   

8.
NiCr/NiSi薄膜热电偶传感器的研制及有限元模拟   总被引:1,自引:0,他引:1  
采用磁控溅射法,在刀具材料为W18Cr4V高速钢的后刀面上镀制了NiCr/NiSi薄膜热电偶。传感器既能满足切削要求,同时又能够快速采集温度信号,并对其进行了静态和动态标定,实验范围内线性误差为0.56%,时间常数为12.7 ms,响应迅速,满足实验要求。最后用ANSYS对传感器的瞬态响应和温度场分布进行了有限元仿真,并通过实验进行了验证。  相似文献   

9.
采用磁控溅射法,在刀具材料为w18Cr4V高速钢的后刀面上镀制了NjCr/Nisi薄膜热电偶.传感器既能满足切削要求,同时又能够快速采集温度信号,并对其进行了静态和动态标定,实验范围内线性误差为O.56%,时间常数为12.7 ms,响应迅速,满足实验要求.最后用ANSYS对传感器的瞬态响应和温度场分布进行了有限元仿真.并通过实验进行了验证.  相似文献   

10.
刀具切削温度对刀具寿命、刀具磨损等有重要影响。因此在实际加工之前预测出刀具温度,对合理选择切削参数、优化数控程序等均具有重要意义。平面铣削等断续切削过程的热条件不同于车削等连续切削过程。用数学物理方法建立了平面铣削过程刀具的一维传热学模型,用解析的方法预测平面铣削过程中刀具前刀面的温度分布,考虑了刀具切出时空气强化对流散热对刀具前刀面温度的影响。结果表明,刀具切入时间和切出时间对刀具温度有较大影响。用文献中断续车削刀具温度实验数据对铣削刀具前刀面温度的传热学预测模型进行了验证,结果表明二者趋势一致,但平面铣削预测的刀具温度略低于断续车削的刀具温度。  相似文献   

11.
提出了一种基于薄膜热电偶传感器的高速切削动态温度监测新方法.采用磁控溅射、光刻技术、PECVD等方法在立方氮化硼(PCBN)高速切削车刀前刀面上沉积多层薄膜,制备NiCr/NiSi薄膜热电偶传感器.详细阐述了薄膜温度传感器的制备过程,设计了高速切削温度和切削力的数据采集与监测系统.以高速数据采集卡PCI-9118为硬件,结合Tchart控件,采用VC ++编制简洁友好的人机界面来实现对高速切削温度和切削力数据的实时采集、显示与分析.试验表明,设计的数据采集和监测系统使用方便、灵活、可靠.  相似文献   

12.
智能刀具状态监测系统研究与进展   总被引:4,自引:0,他引:4  
介绍智能刀具状态监测系统的思想来源和基本原理,提出一种智能刀具状态监测系统的基本结构框架。并分析神经网络在智能刀具状态监测系统中的作用,并对未来的研究工作作出展望。  相似文献   

13.
进行了PCBN刀具切削淬硬合金钢42CrMo的实验.通过JSM649OLV型扫描电子显微镜(SEM)观察PCBN刀具的磨损,利用INCA能量分散光谱仪(EDS)分析了刀具磨损面的金属元素成分,对刀具磨损的机理进行分析和探讨.通过对比几种切削速度下刀具的磨损量,获得切削速度的最佳值.  相似文献   

14.
针对复杂刀具CAM模型刀轨工艺信息获取的问题,提出了一种基于NX平台的刀轨智能获取方法,搭建多平台系统集成的总体框架,分析了系统实现的关键技术,实现了NX CAM功能模块的扩展,并以某刀具零件为例,验证了刀轨智能获取系统的可行性。  相似文献   

15.
合理的微织构可以减小切屑与刀具前刀面的摩擦,降低切削力和切削温度。使用微织构超硬PCBN刀具车削粉末冶金气门座圈,研究切削速度和织构参数对切削温度的影响。通过正交试验,在干切削条件下测量切削温度,结果表明:凹坑密度w对切削温度的影响最为显著,其次是切削速度v和凹坑深度h,凹坑直径d对切削温度的影响最小;最优织构参数组合为凹坑直径d=180μm,凹坑深度h=20μm,凹坑密度w=15%,切削速度v=70m/min。  相似文献   

16.
刘光帅  赵武  程鲲 《工具技术》2005,39(3):72-73
计算机辅助刀量具选择在计算机辅助工艺设计系统(CAPP)乃至计算机集成制造环境(CIM)中是一个至关重要的元素。通过对刀量具查询的特点和方法的研究,对刀量具基础数据库进行了优化和整合,建立了合理并且无冗余的刀量具数据库,并运用Delphi60及MicrosoftSQLServer2000开发了刀量具选择系统。  相似文献   

17.
第九届中国国际机床展览会(CIMT2005)于2005年4月11—17日在北京举行。文中评介了本次展览会上的切削刀具展品,重点阐述了当代刀具结构和数控机床上刀具(工具)系统的创新与发展。并介绍了中国刀具产品在这些方面的进展。  相似文献   

18.
切削状态监测是高档数控机床实现智能加工的必备功能,而切削力测量是进行切削状态监测最直接、有效的方法。目前商业化的切削力测力仪由于体积大、价格贵、兼容性差等原因,难以满足实际工业生产的应用要求。针对机械加工过程中动态切削力的准确测量这一研究目标,提出了一种具有切削力自感知功能的智能刀具,该智能刀具以刀杆作为弹性敏感元件、以半导体应变计作为信号转换元件;通过理论计算和有限元仿真,确定了封装半导体应变计的最佳应力区域以及传感器测量电路的设计方案。所研制的智能刀具结构紧凑、兼容性好、精度高、动态特性好,试验结果显示主切削力Fc方向的静态精度为1.799%、横向交叉干扰为2.610%,进给力Ff方向的静态精度为1.628%、横向交叉干扰为0.694%,智能刀具的固有频率为1 778.98 Hz,可以满足在机床主轴转速不超过26 685 r/min的高速切削过程中准确测量动态切削力的应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号