首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
具有连续光滑特性的结合面接触刚度模型   总被引:2,自引:1,他引:1  
结合面接触刚度直接影响着机械系统的静、动态力学性能和精度保持性水平.基于微凸体在弹性、弹塑性以及完全塑性接触变形过程中,接触刚度具有连续、光滑特性的思想,首先提出利用Hermite多项式插值函数,来弥补单一微凸体接触刚度建模时存在的不连续等缺陷,建立了具有连续光滑特性的单一微凸体接触刚度新模型;然后基于统计学方法,建立了结合面的法向接触刚度模型;最后将所建模型与GW、ZMC、KE和BRAKE模型进行对比分析.结果表明:本文模型实现了单一微凸体接触刚度在不同接触状态之间连续且光滑地转变;对于光滑表面形貌,基于GW、ZMC、KE以及BRAKE模型预测的接触刚度与本文模型结果的差异较小,其中本文模型最接近于纯弹性的GW模型;当表面粗糙度增大时,GW模型与其他几种模型的差异逐渐增大,此时本文模型与考虑微凸体多种变形阶段的ZMC模型吻合较好;再次表明载荷与表面粗糙度是影响刚度的两个主要因素,即随着载荷的增大或表面粗糙度的减小,接触刚度递增.  相似文献   

2.
结合面接触刚度直接影响了机械设备的整机动态特性,为了建立更为准确的接触刚度模型,以分形几何理论为基础,利用单一微凸体承受局部载荷时的弹性变形特性,并基于域扩展因子引入微接触截面积分布函数,推导了考虑表面微凸体相互作用影响的结合面接触刚度分形模型。为了验证所提出模型的准确性,通过三维非接触式测量,获得了试验试样的表面轮廓数据,并根据结构函数法,计算了各个试样的表面分形参数,进而将理论接触刚度与试验结果对比分析,结果表明:法向接触刚度的增长速率与粗糙面表面临界接触面积有关,临界接触面积决定了结合面内的弹性变形占比。考虑微凸体相互作用后,所提出模型的预测曲线更加符合试验中法向载荷与接触刚度的关系。  相似文献   

3.
基于分形几何理论和接触力学理论,用分形理论表征粗糙表面微凸体参数,考虑微凸体由弹性变形向弹塑性变形以至最终向完全塑性变形转化的过程,建立各变形阶段微凸体的接触刚度模型。在此基础上,提出机械结合面法向接触刚度计算模型,该模型揭示了在不同的塑性指数下,结合面法向接触载荷与法向接触刚度之间的关系。结果表明,在塑性指数较小时,微凸体的变形以弹性为主,法向接触载荷与接触刚度之间表现为近似线性关系;随着塑性指数的增加,微凸体变形主要以塑性为主,法向接触载荷与接触刚度之间表现为较强非线性关系。对已有的铣削加工和磨削加工情况下的结合面法向接触刚度试验结果,利用该模型进行数值计算、仿真和分析。结果表明:提出的模型更与试验曲线吻合。  相似文献   

4.
目前粗糙界面接触问题的理论模型和实验研究基本是相互独立的,为此将典型粗糙面的法向接触理论模型与接触力学实验结果进行了系统的对比研究。理论模型考虑了经典的GW模型、CEB模型和ZMC模型及基于非线性有限元的KE模型和JG模型。实验方法考虑了准静态实验、接触共振实验和超声测量实验。结果表明:法向接触过程中,随载荷的增大,界面微凸体塑性变形贡献增大,考虑微凸体塑性变形的模型预测值与实验结果差别较小;相同法向载荷时,随着塑性指数增大,不同模型预测的位移差别增大;同时存在某一塑性指数区间,该区间内理论模型与实验误差最小;超声测量结果准确性依赖于所选择的接触刚度反演模型,改进的反演模型可缩小与理论模型的误差。  相似文献   

5.
基于接触微凸体由弹性变形向弹塑性变形及最终向完全塑性变形的转化皆是连续和光滑的假设,提出一种综合考虑弹塑性变形以及摩擦切向力等因素的新型粗糙表面接触模型。通过分析不同塑性指数以及载荷条件下该模型与ZMC模型以及GW模型预测。结果发现:在低塑性指数、小法向接触载荷情况下,该模型预测的真实接触面积相比ZMC模型偏小,甚至比GW模型预测的真实接触面积偏小,但是随着法向接触载荷的增加,该模型预测的真实接触面积逐渐增大,并超过ZMC模型以及GW模型预测结果;在高塑性指数下,该模型预测的真实接触面积即使在小法向接触载荷情况下也相比ZMC模型以及GW模型预测的真实接触面积大,且随着载荷的增加,真实面积之间的差距也逐渐增大;随着塑性指数的增加,该模型预测的真实面积超过GW模型以及ZMC模型预测值的临界载荷逐渐减小。  相似文献   

6.
在涉及微凸体侧接触的粗糙表面接触建模过程中,通常需要假定微凸体之间侧接触的角度分布规律。提出一种考虑微凸体水平距离分布及相互作用的结合面法向接触刚度建模方法,该方法不再需要假定角度分布规律,而是基于首次发现的单个粗糙表面微凸体水平距离正态分布规律,根据统计学理论进行考虑微凸体相互作用的结合面法向接触刚度建模。对模型进行数字仿真发现:结合面法向接触刚度与接触载荷均随着微凸体水平距离标准差的减小而增大,并且考虑微凸体相互作用会使得结合面的法向接触刚度减小。结合面法向接触刚度随弹性模量的增大而减小,随材料硬度的增大而增大。通过有限元仿真结果与模态试验结果对比可知,基于模型的有限元仿真前三阶固有频率与试验所得结果基本吻合,并且误差相对GZQ模型更小。旨在通过研究单个粗糙表面微凸体水平距离分布,突破侧接触建模时接触角度分布函数仍需假设的理论瓶颈,为更加准确地预测结合面接触特性奠定基础。  相似文献   

7.
针对螺栓结合面,提出一种新的弹塑性接触刚度建模方法。该模型不仅延续了微凸体具有连续光滑接触特性的思想,还揭示了基体变形和微凸体相互作用的耦合关系,提出一种新的弹塑性接触刚度建模方法。首先,根据多尺度理论和数理统计方法,建立了具有连续光滑接触特性的结合面法向接触模型;然后,通过建立单个微凸体-基体系统模型和多微凸体接触模型,探究了基体变形和微凸体相互作用的作用机理和耦合关系,并对结合面接触模型进行修正;最后,对比仿真结果和已有实验数据,验证了修正模型的正确性,并分析了基体变形和微凸体相互作用的影响程度。仿真结果表明:基体变形不仅影响了微凸体的接触变形,还会进一步引起微凸体间相互作用的发生;微凸体相互作用使得微凸体高度分布发生偏移,导致结合面局部高度平面下移;相比于基体变形,微凸体相互作用对接触刚度的影响显著,但表面粗糙度的影响依旧占主导地位。  相似文献   

8.
新的粗糙表面弹塑性接触模型   总被引:18,自引:3,他引:15  
提出一种新型的粗糙表面弹塑性微观接触模型.该模型的建立基于接触力学理论和接触微凸体由弹性变形向弹塑性变形及最终向完全塑性变形的转化皆是连续和光滑的假设.研究单个微凸体在载荷逐渐增加时的变形规律,并重点推出弹塑性变形区间的接触方程.在此基础上应用概率统计理论导出了粗糙表面的接触载荷、平均分离和实际接触面积之间的数学关系式.在不同的塑性指数和载荷条件下,该模型与GW弹性模型和CEB弹塑性模型就实际接触面积和法向距离的预测结果进行了对比.结果表明,在同样塑性指数和载荷条件下比GW模型预测的实际接触面积大但法向距离小,且两者的差距随塑性指数和载荷的增加而增大.因此该模型的预测结果更加符合人们的试验观察和直觉,能够更加科学和合理地描述两个粗糙表面的微观和宏观接触状态.  相似文献   

9.
基于三维分形理论,建立了同时考虑摩擦和微凸体相互作用影响的结合面法向接触刚度和接触阻尼分形模型。通过对所建模型仿真,分析了摩擦因数、分形维数、分形粗糙度参数和接触载荷对接触刚度和接触阻尼的影响。研究结果表明,该模型的接触刚度和接触阻尼随着法向载荷和分形维数的增大而增大,且会随着分形粗糙度参数的增大而变小;接触刚度随着摩擦因数的增大而减小,而接触阻尼则随着摩擦因数的增大而先增大后减小。另外将仅考虑微凸体相互作用和既无摩擦又无微凸体相互作用的情况进行了对比分析,进而得到当分形维数D=2.4时,微凸体相互作用会稍微增大接触刚度;当D≥2.5时,微凸体相互作用会减小接触刚度,且减小的程度越来越大;当2.4≤D≤2.9时,微凸体相互作用会减小接触阻尼。此外,将所建模型的仿真计算结果与实验数据进行对比分析,验证了所建模型的正确性。  相似文献   

10.
螺栓结合面微观接触模型   总被引:5,自引:2,他引:5  
针对螺栓结合面弹塑性区域内的接触机理难以确定问题,根据在变形状态转变的临界点处微凸体真实接触面积与接触载荷转化均满足连续和光滑条件,构造新的多项式函数来描述接触变形与接触面积之间的关系。利用统计学方法建立螺栓结合面真实接触面、接触载荷与接触刚度模型。理论计算结果表明:随着平均表面距离的减少,接触载荷、接触面积和接触刚度随之增加;接触面积和接触刚度,随着接触载荷的增加而增加,当接触载荷增加一定程度后接触刚度和接触面积值分别趋于理想接触刚度和名义接触面积值;当螺栓结合面处于弹性和弹塑性接触状态时,塑性指数越大,接触面积越大,而平均接触距离和接触刚度就越小,当处于完全塑性状态时,塑性指数越大,刚度和平均接触距离就越大,而真实接触面积影响较小。  相似文献   

11.
研究微织构结合面上的表面形貌参数对结合面法向接触刚度的影响。根据微织构表面的形貌特征,将微织构表面分为织构前表面和织构区域两部分,由分形接触理论计算出织构前表面上微凸体的基本参数,忽略织构区域底部未接触部分,将微凸体在接触载荷作用下的变形分为三个阶段:弹性阶段、弹塑性阶段、塑性阶段。由接触力学理论,首先建立织构前表面上单个微凸体的法向接触刚度模型。然后由微观到宏观,结合微织构表面的织构形貌特征,构造整个宏观微织构结合面的法向接触刚度计算模型,研究不同的表面形貌参数对于微织构界面上法向接触载荷、微凸体因载荷产生的变形以及法向接触刚度的影响。经过仿真分析之后,结果表明,当微织构结合面的法向接触载荷不断增大时,结合面的法向接触刚度总体呈单调上升趋势;并且随着织构密度的增加,结合面上由于织构形貌的存在,使得一部分微凸体未产生变形,从而减小结合面的法向接触刚度,并且当法向载荷增加时,这种效果会更加明显;在相同的接触载荷下,塑性指数越高,处于塑性变形状态的微凸体就越多,从而使具有微织构形貌的结合面的法向接触刚度变大。  相似文献   

12.
为研究液黏传动过程中粗糙表面的承载特性,将分形理论引入到两粗糙表面摩擦过程之中,分析传动过程中混合摩擦和边界摩擦两阶段的微凸体承载过程,考虑微凸体弹塑性变形,对M-B模型进行修正,建立修正的微凸体承载模型。建立基于修正M-B模型的微凸体承载模型。通过数值仿真得到有效面积系数、分形参数对液黏调速离合器传动过程的影响规律;对修正的微凸体承载模型的计算结果与M-B模型的计算结果进行对比分析。结果表明:微凸体接触载荷和传递转矩随着面积比的增大而增大,当有效面积系数与尺度系数增大时,接触载荷与传递转矩均有所增大;分形维数为1.5时,微凸体接触载荷与传递转矩最小且随面积比的变化最为缓慢;在整个接触区域内,弹性变形区域的面积、接触载荷以及传递转矩最大,其次是弹塑性变形区域,塑性变形区域最小;考虑弹塑性变形时,微凸体接触载荷与传递转矩均有所下降;修正M-B模型和M-B模型间的修正系数范围在25%以内,修正系数随着有效面积系数、尺度系数的增大而增大,随着分形维数的增大而减小。  相似文献   

13.
基于统计接触理论和等效粗糙接触表面假设,考虑微凸体在加卸载及动态载荷下的变形特征,建立了结合面法向静、动态接触模型,获得了单位面积法向静、动态接触刚度与接触阻尼(基础特性参数)。基于Kadin和Etsion的粗糙表面弹塑性卸载接触模型,通过引入微凸体卸载过程中残余变形与最大变形量及最大接触载荷之间的函数关系,建立静态加卸载接触模型。针对结合面间简谐动态相对位移,利用泰勒公式对静态接触载荷和接触刚度进行展开,得出了动态接触载荷、接触刚度的增量以及动态接触载荷下的能量损耗,建立了法向动态接触刚度和接触阻尼的计算模型。分析了结合面面压、动态位移幅值及振动频率对动态接触刚度和接触阻尼的影响规律,研究表明:法向动态接触刚度相对静态接触刚度有微小偏移增量,动态接触刚度增量和接触阻尼随法向面压及动态位移幅值的增大而非线性增大,动态接触刚度增量随振动频率增加呈非线性增大,而接触阻尼则随振动频率增加呈非线性减小。通过理论计算与试验结果的对比分析,证明了本文建立的结合面法向静、动态接触刚度及接触阻尼理论模型的正确性。  相似文献   

14.
基于各向异性分形几何理论,考虑微凸体变形特点、表面微凸体承受法向载荷的连续性和光滑性原理,以及区分微凸体分别处于弹性、塑性变形时的一个微凸体实际微接触面积,建立固定结合部法向接触力学模型。采用二变量Weierstrass-Mandelbrot函数模拟各向异性三维分形轮廓表面。推导出划分弹塑性区域的临界弹性变形微接触截面积、结合部量纲一法向载荷、结合部量纲一法向接触刚度的数学表达式。数值仿真结果表明:当表面形貌的分形维数、分形粗糙度一定时,真实接触面积随着结合部法向载荷的增大而增大;结合部法向接触刚度随着真实接触面积、结合部法向载荷、相关因子或材料特性参数的增大而变大;当分形维数由1变大时,结合部法向接触刚度随着分形维数的变大而增大;当分形维数增加到趋近于2时,结合部法向接触刚度有时却会随着分形维数的增加而降低。结合部法向接触力学模型的构建,有助于分析固定接触表面间的真实接触情况。  相似文献   

15.
建立精确、有效的结合面接触刚度模型是进一步开展机床整机动力学建模与分析的基础。提出了一种新的弹性接触刚度模型,该模型考虑基体变形的同时,对GREENWOOD和WILLIAMSON提出的粗糙表面微观接触模型(GW模型)进行了修正。为分析基体对接触变形的影响,首先建立含有基体的单个微凸体接触模型,并基于HERTZ接触理论,获得结合面的接触参数;然后,通过引入三角分布函数和解决GW模型在模拟微观接触行为中存在的问题,建立了新的弹性接触刚度模型,并揭示了分布函数、基体变形以及表面粗糙度对结合面接触特性的影响规律。研究表明:三角分布函数能有效地表征表面微凸体高度分布;基体变形的影响是由基体和微凸体相互作用引起,随着法向载荷的增大而明显;表面粗糙度是影响接触刚度的主要因素,相同载荷下,表面粗糙度越大,接触变形越大,接触刚度越小。  相似文献   

16.
针对现有结合面静摩擦因数分形模型的静摩擦因数随结合面法向接触载荷增大而增大,与试验研究结论及统计模型不一致的问题,基于尺度等级定义微凸体的大小,严格区分微凸体高度与变形,构建各尺度等级微凸体的法向接触载荷与接触面积之间关系及其发生弹性和弹塑性第一变形时所能承受的最大切向载荷即最大静摩擦力计算模型,进而建立结合面法向接触载荷与最大静摩擦力计算模型,在此基础上,依据结合面静摩擦因数定义,提出与微凸体尺度等级关联的考虑微凸体完全弹性、弹塑性和完全塑性三种变形机制的结合面静摩擦因数三维分形模型,数值仿真分析了结合面静摩擦因数与法向接触载荷和分形维数D等的关系,结果表明结合面静摩擦因数随着结合面法向接触载荷的增大而减小,随着分形维数的增大而增大,并试验实例验证了所建模型的正确性,解决了现有结合面静摩擦因数分形模型与统计模型和试验结果之间的不一致性.  相似文献   

17.
基于分形几何理论,考虑微凸体因应变硬化而造成弹塑性变形阶段硬度随变形量变化而变化,建立结合面第一、第二弹塑性变形阶段单次加载刚度分形模型。推导出在计入硬度变化的情况下,单个微凸体在弹塑性变形阶段法向接触刚度与接触面积之间的关系式,进而得出结合面在弹塑性变形阶段法向接触刚度与接触面积、接触载荷之间量纲为一的关系式,并通过仿真分析得出相关参数对结合面法向接触刚度的影响。仿真结果显示:考虑硬度变化时,结合面量纲一法向接触刚度的值与法向实际接触载荷、实际接触面积之间存在关系;结合面法向接触刚度随着分形维数D的增大而增大;分形维数一定时,结合面法向接触刚度随表面长度尺度参数G值增大而增大。  相似文献   

18.
基于分形理论,利用双变量Weierstrass-Mandelbrot函数模拟三维分形结合面,建立尺度相关的三维分形结合面法向接触刚度模型。推导出各等级微凸体发生弹性、弹塑性以及完全塑性变形的存在条件。确定结合面上各等级微凸体的面积分布密度函数,推导出法向接触刚度和法向接触载荷的解析表达式。计算结果表明:当结合面上的微凸体只能发生弹性变形,即自身等级小于弹性临界等级的微凸体,该部分微凸体引起的法向接触刚度和对应法向载荷关系呈非线性。当微凸体的等级大于弹性临界等级,在结合面接触过程中,微凸体弹性变形引起的法向接触刚度与对应的法向载荷关系为线性,非弹性变形引起的法向接触刚度与法向载荷关系为非线性。微凸体的等级范围对结合面的刚度影响较大,在相同的法向载荷作用下,高等级微凸体的结合面产生较高的法向接触刚度,即结合面越平整,结合面的法向刚度越高。  相似文献   

19.
基于分形理论同时考虑微凸体的弹性、第一弹塑性、第二弹塑性、完全塑性四个阶段的变形状态,得出单个微凸体在各变形阶段的接触刚度模型,从而得出影响单个微凸体法向接触刚度的相关参数。引入频率指数并得出各变形阶段频率指数的临界值,推导出频率指数值处于不同区间时结合面的接触刚度模型。模型仿真结果表明,分形维数D取1. 1~1. 9时,随着D值的增大,无量纲法向接触刚度的值单调增大;微凸体频率指数处于各个区间时无量纲法向接触刚度的值随法向实际接触面积的增大均增大。  相似文献   

20.
为研究混合润滑状态下粗糙表面基体变形对结合面接触特性的影响,建立了考虑基体变形的结合面接触刚度模型。首先,通过单微凸体-基体系统模型分别求解微凸体和基体的接触刚度,利用不动点迭代法获得微凸体真实变形量;其次,基于分形理论建立结合面固体接触刚度模型,通过固体接触刚度获得液体介质的接触刚度。根据仿真结果分析了基体变形、粗糙表面形貌以及润滑介质对结合面接触特性的影响规律。结果表明:当真实接触面积一定时,通过新模型计算的法向载荷小于忽略基体变形的模型;在接触前期,结合面的接触刚度主要由液体介质接触刚度主导,随着真实接触面积的增加,液体接触刚度占总刚度的比率越来越小,最后转变为固体的接触刚度主导结合面的接触刚度。该模型为研究混合润滑状态下结合面的接触特性提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号