共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Microstructure evolution and mechanical properties of newly designed 01C-6Mn-05Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction (XRD), scanning electron microcopy (SEM), dilatometric simulation, optical microstructure (OM) and tensile testing in this work. The experimental results indicate that the TRIP steel with Mn of 6% could form a considerable amount of retained austenite with good TRIP effect after a simple intercritical annealing treatment, and the matrix microstructure before intercritical annealing treatment can greatly affect the final microstructure. The original microstructure of the ferritic matrix steel was eliminated, while annealed martensite was remained from the martensite matrix steel under the same intercritical annealing conditions. 相似文献
2.
LIZhuang WUDi HURong 《钢铁研究学报(英文版)》2005,12(3):51-55
Inthelasttwodecadesconsiderableefforthas beenputonthedevelopmentofhighstrengthsteels fortheautomotiveindustry.Themainaimistore ducecarweightbyincreasingthesteelstrength. Nowmoreandmoreattentionhasbeenpaidtohigh strengthtransformation inducedplasticity(TR… 相似文献
3.
The precipitation state, microstructure, retained austenite stability, and mechanical properties of cold-rolled Ti-microalloyed CMnAlSiP TRIP steel were investigated. The precipitation state was analyzed in each processing step by means of transmission electron microscopy, chemical analysis using the anodic dissolution method, and by model calculations. Ti additions refined the microstructure mainly by the pinning of austenite and ferrite grain boundaries by various Ti-containing precipitates. Ti additions also resulted in a refinement of the size of the retained austenite islands and caused a slight decrease of the volume fraction and carbon content of the retained austenite. The morphology of the retained austenite was also changed and the stability of the retained austenite decreased, but Ti addition still resulted in an adequate strength-ductility balance and a tensile strength close to 1 GPa. 相似文献
4.
5.
研究了两种不同锰含量的高锰奥氏体钢在室温拉伸变形过程中力学性能和组织的变化.结果表明,随着钢中锰含量的变化,实验钢在流变应力的作用下出现相变诱导塑性的TRIP效应和孪晶诱导塑性的TWIP效应.在1×10-3 s-1的初始应变速率条件下,锰的质量分数为23.8%的实验钢可达到666 MPa的抗拉强度和67%的伸长率,而锰的质量分数为33%的实验钢可达到540 MPa的抗拉强度和97%的伸长率.并且在10-3~10-1 s-1的初始应变速率范围内,实验钢的抗拉强度对于流变应力不敏感,而实验钢的塑性则表现出一定的应变速率敏感性.由于该钢具有较好的综合力学性能,有望作为新一代高强度、高塑性汽车用钢. 相似文献
6.
The microstructure and mechanical properties of cold rolled TRIP steel containing C 0.2, Si 0.5, Mn 1.5, A1 1.3, and Nb-kV 0.13 (mass%) with annealed martensite (TAM steel) were investigated using optical microscopy, field emission gun scanning electronic microscope (FEG SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and mechanical testing. The mierostructure of the TAM steel mainly consisted of polygonal ferrite, bainite, annealed martensite and retained austenite. The martensite after annealing did not spheroidize, which consisted of annealed lath martensite structure and interlath second phase. Compared with the traditional TRIP steel with polygonal ferrite matrix (TPF steel), the TAM steel has more excellent elongation rate over 32%. The TAM steel also has better strain hardening behavior than the TPF steel. The excellent elongation and strain harden- ing behavior of TAM steel result from high retained austenite stability of the TAM steel, which is attributed to its fine distribution and medium strength ratio of second phase to matrix. 相似文献
7.
通过实验室热轧机研究了热机械控制工艺(TMCP)对热轧TRIP钢力学性能的影响.结果表明:在热轧变形过程中应变诱导铁素体相变,低温大变形量造成铁素体晶粒细化.随终轧温度的降低和终轧变形量的增加,残余奥氏体的稳定性增加,相变诱发塑性(TRIP)效果更好.在700 ℃终轧且终轧变形量为50%时,抗拉强度、屈服强度和总伸长率分别达到791 MPa,538 MPa和36%的最大值. 相似文献
8.
9.
新型超高强TRIP钢组织性能研究 总被引:1,自引:0,他引:1
采用增大冷轧压下量以及合理的连续退火工艺,得到了含有大量稳定残余奥氏体的一种新型适合于热镀锌的超高强贝氏体基体TRIP钢。该钢将硅含量降低到0.28%,加入0.08%的磷,弥补了由于硅含量降低而引起的强度损失,同时有效阻止渗碳体的析出,使室温组织中含有17.6%块状或片层状残余奥氏体。添加钒进一步提高了基体强度。贝氏体基体的TRIP钢具有优良的综合力学性能:抗拉强度1030MPa,强塑积达到22660MPa·%。 相似文献
10.
In the present work, advanced high strength and high ductility TRIP/TWIP steels with different manganese concentrations were studied. The microstructures of these steels were evaluated prior to and after deformation and the mechanical properties of these steels were determined. The microstructure analysis indicated that both TRIP and TWIP effects appeared in the steel with lower Mn content, while the TWIP effect was the dominant deformation mechanism in the steel with a higher Mn content, with many deformation twins formed during the deformation. In addition, the forming limit diagrams of these steels were recorded and the results showed an excellent formability. 相似文献
11.
LIZhuang WUDi 《钢铁研究学报(英文版)》2004,11(6):40-44
A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing. This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium. Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite when it was strained at temperatures between Ms and Md, because retained austenite was moderately stabilized due to carbon enrichment by austempering. Austempering was carried out at different temperatures and 400℃ was found to be optimal. Tensile strength, total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400℃ and strained at 350℃. 相似文献
12.
Kim Sung-joon 《钢铁研究学报(英文版)》2011,(Z1):1004-1007
The effects of bainitic treatment on microstructure and mechanical properties of 0.10C-1.5Mn-l.5Al TRIP-aided cold-rolled steels have been investigated.The samples were heated by intercritical annealing at 820℃for 2 min and quenched in banitic temperature with different hoding time for 5 to 300s,two salt bath were used for the heat treatment.Experimental results show that the yield strength and elongation increase with the increasing of bainitic holding time,while the tensile strength decrease.The volume fraction of retained austenite rise at the beginning of bainitic holding and then reduce,the carbon content of retained austenite increase during the bainitic holding.The tensile strengthen multiply elongation reaches the highest value at 120s.The mechanical stability of retained austenite fits well with strain hardening during deformation. 相似文献
13.
Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investigated by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure containing polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical properties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the specimen was deformed at 250 ℃, and the total elongation and strength-ductility reached maximum (38% and 28614 MPa·%, respectively) at deforming temperature of 100 ℃. Martensite could nucleate when austenite was deformed above Ms, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ℃. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the applications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing. 相似文献
14.
15.
鉴于热镀锌TRIP钢在成分和工艺上的特殊性,试验采用低Si含P以及V微合金化的成分设计思路,并进行镀锌连续退火工艺模拟,分析其微观组织和性能。探讨了残余奥氏体稳定性的影响因素及强化机理。结果表明,添加P和采取较高的冷轧变形量均有利于提高残余奥氏体量及其稳定性。在残余奥氏体的形变诱导马氏体相变、贝氏体和V析出的强化作用以及铁素体晶粒细化的共同作用下,抗拉强度和强塑积分别达到1 035 MPa和25 875 MPa·%。 相似文献
16.
利用金相显微镜和X射线衍射方法研究了0.11C-1.23Si-1.65Mn冷轧TRIP钢等温淬火温度对组织和力学性能的影响.结果表明,实验钢在840℃×180 s退火 420℃× 240 s等温处理后可得到6.55%的残余奥氏体,此时可获得较佳的相变诱发塑性和较好的强韧性配合,其强塑积可达到2.28×104MPa·%,提高或降低等温温度都会降低强塑积.在840℃退火,适当延长退火时间,可提高残余奥氏体体积分数及碳含量,有助于提高材料的综合性能. 相似文献
17.
The controlled cooling technology following hot rolling process is a vital factor that affects the final microstructure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 450 hot rolling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (air-cooling and ultra-fast cooling “AC-UFC” and ultra-fast cooling, air-cooling and ultra-fast cooling “UFC-AC-UFC”) were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mssbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 1152%, total elongation of 32% and product of tensile strength and total elongation of 27552 MPa·% was obtained. 相似文献
18.
Cheoljun Bae Rosa Kim Un-Hae Lee Jongryoul Kim 《Metallurgical and Materials Transactions A》2017,48(9):4072-4079
High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed. 相似文献
19.
研究了两相区退火时间对中锰钢(0.1C-5Mn)的微观组织结构、力学性能及扩孔性能的影响。利用扫描电镜(SEM)和背散射电子成像技术(EBSD)对退火过程中微观组织结构的演化进行了表征;通过拉伸和扩孔试验测定了不同退火状态下中锰钢的强度、塑性和扩孔率。研究表明,中锰钢在650℃下逆转变退火获得了含有大量奥氏体相的基体为超细晶组织的奥氏体、铁素体双相钢组织,强塑积(Rm·A)达到30GPa·%以上;奥氏体体积分数随退火时间的延长而逐步增加,但过多亚稳奥氏体对钢的综合成形性能不利。 相似文献