首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了固溶温度、时效温度、时效时间对Ti-6Cr-5V-5Mo-4Al-1Nb(Ti-65541)合金显微组织与力学性能的影响。结果表明,在β相变点以上固溶并时效后,合金中析出细小的次生α相,初生α相完全消失;在较低温度固溶并时效后,次生α相和初生α相同时存在。时效温度对合金强度和塑性的影响最为显著,固溶温度次之,时效时间的影响最弱。随着时效温度的升高,合金的抗拉强度和屈服强度降低,塑性提高。随着固溶温度的提高,合金的强度提高,塑性降低。随着时效时间的延长,合金强度和塑性总体呈降低趋势。在740~760℃范围内固溶处理,在540~580℃范围内时效且时效时间在4~6 h内,可获得综合性能优异的Ti-65541合金。  相似文献   

2.
对Ti-6Al-6V-2Sn钛合金棒材进行锻造、固溶及时效处理,利用光学显微镜、XRD、SEM及力学性能试验对该合金不同固溶、时效工艺下的显微组织和力学性能进行研究。结果表明:Ti-6Al-6V-2Sn钛合金锻棒的组织为初生等轴α+β转变组织,合金经固溶处理后的组织为初生α_p相、马氏体α′、α″相和亚稳β相,强度有所降低,断面收缩率有所上升,说明固溶处理有一定的软化作用,但随着固溶温度升高,强度增加,塑性下降;经固溶处理后的棒材在时效处理过程中,亚稳态组织析出细小弥散的次生αs相,使合金强度明显强化,塑性略有降低,且随着时效温度的升高,强化效果下降,塑性随之提高。经过综合比较,并考虑强塑性的最佳匹配,可以确定本实验中Ti-6Al-6V-2Sn合金固溶时效热处理的优化工艺为(880℃,1 h,WQ)+(580℃,4 h,AC)。  相似文献   

3.
研究了不同热处理工艺对Ti-62222s钛合金棒材显微组织和力学性能的影响。结果表明:Ti-62222s合金在两相区经过普通退火处理后,随着退火温度的升高,初生α相尺寸略有增加,β转变组织增多,次生α片层厚度增加,具有较好的塑性;而经过两相区固溶+时效处理得到双态组织,通过控制固溶温度以及时效温度来调整初生α相含量以及次生α片层厚度,以改善其强度、硬度和塑性。采用880℃/1 h/AC+540℃/8 h/AC两相区固溶+时效的热处理工艺,可实现合金强度-塑性-硬度的较好匹配,获得优良的综合性能。  相似文献   

4.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

5.
研究了Ti-26合金经不同变形量变形后,在β相区和α β相区分别固溶、时效的力学性能和显微组织的变化.研究发现,Ti-26合金经80%变形后,经730℃×30min 500℃×10h固溶时效的综合力学性能最好;变形量为50%~80%时,随变形量的增加,强度变化不大,塑性得到明显提高;固溶时效后的组织为β基体和基体上弥散分布的短棒状α相.  相似文献   

6.
固溶温度对TB8钛合金组织及性能的影响   总被引:2,自引:0,他引:2  
研究了固溶温度对TB8钛合金显微组织及力学性能的影响.结果表明,随固溶温度的升高,合金β晶粒明显长大;合金固溶态强度略有降低,塑性逐渐升高;合金固溶+时效处理后,β晶界及晶粒内部均匀弥散析出大量次生α相颗粒,强度呈上升趋势,塑性明显降低.TB8钛合金在770 ~ 830℃温度范围内固溶后,具有较高的强度和优异的塑性,经520℃时效后,综合性能优异,抗拉强度> 1300 MPa,伸长率>15%,断面收缩率>55%.  相似文献   

7.
研究了不同时效温度对时效处理后的Ti-5523合金的微观组织和力学性能的影响。结果表明:在合金相变点(790±5)℃以下的760℃或相变点以上的840℃固溶处理1 h,460~580℃时效处理8 h,Ti-5523合金的微观组织和力学性能对时效温度敏感。合金强度随着时效温度升高而降低,塑性则逐渐提高。合金在760℃×1 h/AC固溶+580℃×8 h/AC时效处理后的断后伸长率和断面收缩率分别为17. 50%和67%,具有良好的塑性。固溶及时效处理后的Ti-5523合金强度主要受α相含量和尺寸的影响,α相尺寸减小或α相含量增加均可以提高合金的强度。随着时效温度的升高,在双相区固溶的时效态合金的初α相逐渐从长条状向短球状、椭球状转变,且含有短球状、椭球状的初生α相的合金具有更好的塑性变形能力。由于初生α相和次生α相的尺寸、含量随着时效温度的增加而发生的改变对合金力学性能产生的影响是协同的,因此双相区固溶的时效态合金的力学性能对时效温度非常敏感。  相似文献   

8.
研究了Ti-1300合金固溶处理后低速率升温时效的α相析出行为及力学性能。通过SEM、TEM和拉伸试验等手段对不同固溶温度处理的Ti-1300合金进行显微组织观察和力学性能测试。结果表明:随着固溶温度由820℃降低至790℃,初生α相(αp)的尺寸变化不明显,但是其含量(面积分数)从0.8%增至6.7%;合金经4℃/min升温速率加热到500℃时效4 h,显微组织中析出次生α相(αs)的长度从0.098μm增加到0.440μm。此外,固溶温度降低使合金的强度与塑性均提高,拉伸断口由沿晶脆性断裂特征转变为韧窝状的韧性断裂特征。820℃固溶处理的试样其抗拉强度为1358 MPa,断后伸长率小于2%,而790℃固溶处理的试样其抗拉强度为1548 MPa,断后伸长率为10.2%,可获得优良的强塑性匹配。分析认为790℃固溶处理组织中初生α相含量较多,其尺寸为微米尺度,同时基体中时效析出的片层αs相能产生显著的强化效果。  相似文献   

9.
研究了Ti-1300合金经不同温度固溶处理和固溶+时效处理后的组织和性能。结果表明:Ti-1300合金在固溶处理后,随着固溶温度升高,合金的抗拉强度和屈服强度逐渐降低,断面收缩率先升高后降低,断后伸长率有所升高。Ti-1300合金在850℃固溶处理可获得最佳的综合性能。通过固溶和时效处理,Ti-1300合金硬度随着固溶温度的升高而增大。当固溶处理在相变点以下时,β相中时效析出次生αs相较粗大;而固溶处理在相变点以上时,β相中时效析出次生αs相较细小且均匀。  相似文献   

10.
研究了Ti-1300合金经不同温度固溶+缓慢升温时效处理后的显微组织和拉伸性能.结果表明,在相变点之上和之下固溶+随炉升温时效处理后合金发生了不同的相变,对应的拉伸性能也有很大的不同.Ti-1300合金在相变点之上固溶处理后缓慢升温到500 ℃时效处理发生β→ω转变,试样强度很高,而塑性很差.Ti-1300合金在相变点之下固溶处理+随炉升温时效处理发生β→α转变,试样经随炉升温到570 ℃时效处理后的抗拉强度为1430 MPa,而延伸率也达到8%.  相似文献   

11.
研究了不同固溶时效温度对IMI834合金显微组织和力学性能的影响。结果表明:IMI834合金板材经低温热处理的组织和轧态没有明显差别,室温强度也与轧态基本保持不变;合金在α+β两相区热处理后得到双态组织,随着固溶温度的升高,初生α相含量减少,室温强度略有增加,塑性的变化规律与强度相反,初生α相含量的减少对板材的室温强度没有明显的影响。随着时效温度的提高,板材的室温强度降低,塑性有所降低。板材的600 ℃高温力学性能变化规律与室温相似,但断面收缩率较室温好。本试验得到的较优的热处理制度为1035 ℃×1 h, AC+(700~750) ℃×4 h, AC。  相似文献   

12.
借助光学显微镜和室温拉伸试验,研究了固溶处理对Ti-26合金显微组织和拉伸性能的影响。研究表明:Ti-26合金理想固溶处理工艺为790℃处理40 min,经该工艺处理后晶粒尺寸适度,强度、塑性匹配良好。固溶温度越高,β晶粒尺寸越大,温度超过790℃时,抗拉强度和塑性参数呈恶化趋势。水冷、油冷和空冷所得合金显微组织差异不明显,但炉冷速度较慢时,β→α相转变相对完全,β晶界和晶粒内析出球状次生α相,直接导致合金抗拉强度大幅提升,塑性明显下降。  相似文献   

13.
研究了紧固件用Ti-26合金棒材经80%变形后同溶态与时效态的显微组织和力学性能的变化规律.结果发现:不同的同溶温度决定Ti-26合金中β品粒的大小,时效温度决定析出α相的形态与尺寸.时效后的组织中只有β相与针状α,其中析出相α处于中间湿润状态.同溶后合金的强度较低,但塑性最好;时效后的强度高,塑性相对较低.时效过程中随温度的升高,强度降低,塑性提高.断口分析说明,析出的α相降低了合金的塑性,其中伸长率受到的影响最大.  相似文献   

14.
以Ti6Al4V-DT(TC4-DT)为研究对象,分别对其进行不同方式的固溶、冷却和时效处理,利用金相显微镜、拉伸试验机研究其显微组织、强度和塑性的变化。结果表明:强度和塑性的主要影响因素为固溶温度和冷却方式。在α+β两相区和单相区固溶并在580℃时效8 h,可以分别得到双态组织和片层组织,相变点以下随着固溶温度的提高,初生α相含量明显减少,且强度和塑性在两相区固溶更优;相变点以上固溶时,冷却速率降低会使α相片层粗化,抗拉强度和屈服强度逐渐降低;在两相区固溶α相尺寸随着时效温度升高而增大,在低温时效时,由于α相的弥散强化作用使得合金强度较高。TC4-DT合金在α+β两相区860℃/1.5 h固溶,550℃/8 h时效处理,在空冷的状态下,可获得合金强度(1017 MPa)、塑性(伸长率22%)匹配良好的综合性能。  相似文献   

15.
利用高速线材轧机制备Ti-6Al-4V合金小规格棒材(d10 mm),研究固溶与时效热处理工艺对棒材显微组织与力学性能的影响。结果表明:棒材组织主要由α相和β相组成,随着固溶温度从900℃升高到990℃,棒材中α相含量减少而β相含量逐渐增多,显微组织出现了由初生等轴α相向针状β相转变进而向全片层状β转变的过程,棒材拉伸强度逐渐升高,而伸长率明显降低;棒材在930℃固溶后进行时效处理,随着时效温度从450℃升高到650℃,β相转变组织分解析出α相,组织主要由(α+β)相和β相混合组成,α相不断集聚长大,使组织粗大,棒材抗拉强度降低,伸长率升高;经(930℃,30 min,水淬)+(550℃,4 h,空冷)热处理后,棒材强度和塑性达到最佳配合,抗拉强度为1031 MPa,伸长率为12.5%。  相似文献   

16.
对TC21钛合金进行三重热处理试验,研究了热处理温度和冷却速率对TC21钛合金网篮组织及拉伸性能的影响。结果表明,TC21合金在β单相区高温(990℃)固溶后,再经历两相区低温(870~910℃)固溶和低温(590℃)时效后,合金的显微组织呈现典型的网篮组织。随着第二重热处理温度的升高,片状α相含量和长度显著减小,厚度增加,合金的强度增加,塑性下降。经不同的冷却速率处理后,水冷和空冷试样的显微组织均由α相、β相和马氏体αy组成,而炉冷试样仅由α相和β相组成。三者的拉伸性能相比较,水冷和空冷试样表现为强度较好,塑性较差;炉冷试样表现为塑性较好,强度较差。TC21合金较好的三重热处理工艺为:990℃/1 h, AC+870℃/1 h, AC+590℃/4 h, AC。  相似文献   

17.
本文以Ti6Al4V-DT (TC4-DT)为研究对象,分别对其进行不同方式的固溶、冷却和时效处理,利用金相显微镜、拉伸试验机研究其显微组织、强度和塑性的变化,结果表明:强度和塑性的主要影响因素为固溶温度和冷却方式。在α+β两相区和单相区固溶并在580℃时效8小时,可以分别得到双态组织和片层组织,相变点以下随着固溶温度的提高,初生α相含量明显减少,且强度和塑性在两相区固溶更优;相变点以上固溶时,冷却速率降低会使α相片层粗化,抗拉强度和屈服强度逐渐降低;在两相区固溶α相尺寸随着时效温度升高而增大,在低温时效时,由于α相的弥散强化作用使得合金强度较高。TC4-DT合金在α+β两相区860℃/1.5h固溶,550℃/8h时效处理,在空冷的状态下,可获得合金强度(1017MPa)、塑性(伸长率22%)匹配良好的综合性能。  相似文献   

18.
对BT14钛合金(Ti-5.43Al-3.11Mo-1.41V)进行不同温度固溶+时效热处理,研究了固溶温度对合金的显微组织、元素分布和硬度和压缩性能的影响。结果表明,在β相转变温度以下固溶后,随固溶温度上升,初生α相含量不断减少,初生α相和基体相(α′、α″或亚稳β相)中的Al含量均增加,Mo和V含量均下降,显微硬度上升。890、940、990 ℃固溶+540 ℃×6 h时效处理后,基体相分解形成弥散细小的α+β相,起到显著的强化作用,导致显微硬度整体提高,且随着固溶温度的升高,显微硬度和压缩屈服强度提高。  相似文献   

19.
研究了不同固溶温度对Ti-6Al-4V合金的显微组织及剪切强度的影响。试验表明,在920~980℃之间固溶并在500℃时效后,随着固溶温度的升高,剪切强度不断提高,从643.5 MPa逐步增加到708.75 MPa,显微组织中的β相不断增加,α相不断减少;当在980℃固溶时,α相基本消失,出现了网篮组织。  相似文献   

20.
对经过790℃固溶处理后的Ti-26合金棒材进行了不同温度及时间的时效处理,研究了时效温度和时间对Ti-26合金棒材显微组织和拉伸性能的影响。研究结果表明:在450-550℃范围内,随时效温度升高,合金组织有针状“相弥散物析出。升温至510℃,相同时效时间内析出α相数量最多,高于510℃,部分析出α相开始溶解。合金时效处理10h内,随时效时间延长,合金组织针状α相弥散物数量增加,且针状α相存在跨晶界长大现象。合金经510℃×10h时效处理,OL相形核和长大达到最佳匹配,Ti-26合金获得理想的强度和塑性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号