首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。  相似文献   

5.
针对基于欧氏距离比值作为图像尺度不变特征变换(SIFT)特征匹配相似性度量时,距离比阈值难以设置最优,且固定距离比阈值易引起误匹配或漏匹配等问题,引入随机抽样一致性(RANSAC)算法。该算法对SIFT匹配算法中的距离比阈值进行自适应优化,确定最佳的阈值,再利用双向匹配的方法剔除误匹配点。实验结果表明,针对不同的实验图像,所提算法都能自适应地求解出一个最优的比例阈值,使得匹配点数最多,同时具有较高的匹配正确率,经过双向匹配的策略优化后效果更好。  相似文献   

6.
SIFT和改进的RANSAC算法在图像配准中的应用   总被引:1,自引:0,他引:1  
在机器人视觉系统中运用SIFT描述子对现实世界中的目标进行识别,这一研究已经取得了很大的进步。运用SIFT生成的图像特征向量的性能十分稳定,对旋转、缩放、平移是保持不变性的,对一定程度目标遮挡、光照变化、视点变化、杂物场景和噪声等也能保持很好的不变性。RANSAC算法早就已经是计算机视觉领域常用的一个进行矫正的标准方法,在标准的RANSAC算法基础上加入了假设评价,改进为R-RANSAC(The Randomized RANSAC)算法。对这两个方面进行论述,运用SIFT(尺度不变特征变换)算法对双目机器人的两幅视觉图像进行匹配,采用带SPRT的R-RANSAC改进算法对匹配过程进行优化,尽可能在短的时间里完成匹配矫正,进而加速整个配准的时间。  相似文献   

7.
针对智能交通系统中基于视觉的车牌识别中存在的依赖于光学字符识别以及在复杂环境下准确率低的问题,提出了基于SIFT特征匹配的车牌识别方法。通过基于插值的超分辨率图像重建方法对车牌图像进行预处理,基于轮廓特征对车牌进行定位,通过SIFT特征匹配的方式,利用模板库中的车牌字符模板对车牌进行定位验证以及字符识别。实验结果表明该方法能有效提高车牌识别的效率。  相似文献   

8.
9.
一种改进的SIFT图像特征匹配算法   总被引:2,自引:0,他引:2  
针对传统SIFT图像特征匹配算法因其特征描述算子维度过高而造成的计算量大、实时性差的问题,提出一种基于内核投影的改进SIFT图像特征匹配算法。传统SIFT特征匹配算法采用平滑加权直方图计算特征点的梯度模值和梯度方向。采用内核投影算法对其进行改进,使生成的特征描述算子的维度降低,从而能够提高特征匹配效率。实验结果表明,改进后的SIFT算法具有较高的匹配精度,同时匹配时间有所减少,使实时性得到提高。  相似文献   

10.
针对光电成像制导过程中,电视导引头实时获取的前视图像与预存的目标区域基准图像之间存在较大视角差异时,SIFT(Scale Invariant Feature Transform)算法得到的正确匹配点对数较少导致匹配失败的情况,提出一种改进的SIFT景象匹配算法。该算法通过在高斯尺度空间中提取抗仿射变换区域,并进行区域归一化处理来获得抗视角变换特征点集的方法,使正确匹配点对明显增加。实验结果表明,该算法对视角变换具有很好的鲁棒性:在视角差高达50°至60°以上时得到的匹配准确率较SIFT算法提高近5倍,具备工程实用价值。  相似文献   

11.
《微型机与应用》2015,(20):36-38
对于边界显著的图像,用二值图像代替灰度图像进行SIFT特征匹配,节约了运行时间。同时在SIFT算法中用128维的特征描述子进行特征描述影响了算法的实时性,用欧氏距离进行匹配对算法的准确性有一定的影响。提出了一种改进SIFT算法,用64维的特征描述子以及加权的欧式距离进行匹配。实验结果表明,所提出的改进方法在提高准确率的同时还减少了运行时间。  相似文献   

12.
大多数基于卷积神经网络(CNN)的算法都是计算密集型和存储密集型的,很难应用于具有低功耗要求的航天、移动机器人、智能手机等嵌入式领域.针对这一问题,提出一种面向CNN的高并行度现场可编程逻辑门阵列(FPGA)加速器.首先,比较研究CNN算法中可用于FPGA加速的4类并行度;然后,提出多通道卷积旋转寄存流水(MCRP)结...  相似文献   

13.
One of the most promising techniques to detect and thwart a network attack in a network intrusion detection system is to compare each incoming packet with pre-defined attack patterns. This comparison can be performed by a pattern matching engine which has several key requirements including scalability to line rates of network traffic and easy updating of new attack patterns. Memory-based deterministic finite automata meet these requirements, however their storage requirement will grow exponentially with the number of patterns which makes it impractical for implementation. In this paper, we propose a customized memory-based pattern matching engine, whose storage requirement linearly increases with the number of patterns. The basic idea is to allocate one memory slot for each state instead of each edge of the deterministic finite automaton. To demonstrate this idea, we have developed two customized memory decoders. We evaluate them by comparing with a traditional approach in terms of programmability and resource requirements. We also examine their effectiveness for different optimized deterministic finite automata. Experimental results are presented to demonstrate the validity of our proposed approach.  相似文献   

14.
We present a compact FPGA implementation of a modular exponentiation accelerator suited for cryptographic applications. The implementation efficiently exploits the properties of modern FPGAs. The accelerator consumes 434 logic elements, four 9-bit DSP elements, and 13604 memory bits in Altera Stratix EP1S40. It performs modular exponentiations with up to 2250-bit integers and scales easily to larger exponentiations. Excluding pre- and post-processing time, 1024-bit and 2048-bit exponentiations are performed in 26.39 ms and 199.11 ms, respectively. Due to its compactness, standard interface, and support for different clock domains, the accelerator can effortlessly be integrated into a larger system in the same FPGA. The accelerator and its performance are demonstrated in practice with a fully functional prototype implementation consisting of software and hardware components.  相似文献   

15.
改进型SIFT立体匹配算法研究   总被引:1,自引:0,他引:1  
针对机器人视觉系统立体匹配中存在的匹配重复或错误等问题,提出了一种基于尺度不变特征变换(Scale Invariant Feature Transform,SIFT算法)和余弦相似度匹配规则的立体匹配方法。该方法以左、右两幅图像中特征向量较多的图像作为基准匹配图像,另一幅图像作为待匹配图像;再由二者的特征向量之间的余弦相似度所建立的匹配规则进行立体匹配。实验结果表明,改进型立体匹配方法有效地降低了匹配错误或重复比,具有较强的鲁棒性,匹配效果较佳,更加有利于机器人视觉系统的三维重建与定位。  相似文献   

16.
改进SIFT特征在图像匹配中的应用   总被引:10,自引:2,他引:10       下载免费PDF全文
对SIFT算法进行研究,针对SIFT特征描述符的高维数和高复杂度问题,进行了改进。通过对大量的不同类型的图像进行特征匹配实验,实验结果表明,当图像存在不同程度的几何变形、辐射畸变和噪声影响时,改进后的算法更稳定、更快速。  相似文献   

17.
基于彩色的SIFT特征点提取与匹配   总被引:3,自引:0,他引:3  
由于只是利用图像的灰度信息,SIFT算法不能很好地区分形状相似但颜色不同的物体。针对这一问题,提出了一种基于彩色的SIFT特征点提取算法,并着重分析了多种彩色模型对算法性能的影响。这种算法也是在图像的灰度尺度空间上检测特征点,但其特征向量由各描述子子区域的彩色模型分量的均值组成并在原始的彩色图像上进行计算。实验结果证明了该算法的有效性。  相似文献   

18.
以基于图像序列摄像机自标定为基础,针对尺度不变特征转换SIFT算法误匹配率高且运行效率低的问题,提出一种改进的双向SIFT特征匹配算法。在去除误匹配方面,首先采用双向匹配消除部分误匹配点对,然后结合视差梯度约束算法和随机抽样一致性RANSAC算法提纯匹配点对;在提高运行速度方面,首先在初匹配中采用K邻近算法,其次调整视差梯度约束迭代条件,都通过减少迭代次数来降低算法耗时。实验表明,改进后的算法在去除了大部分误匹配的基础上,保留了足够的匹配点对以用于摄像机空间位置和姿态的自动标定,且相较SIFT算法在运行速度上有了较大的改进。  相似文献   

19.
针对传统图像匹配算法在几何差异场景下匹配精度低的问题,提出一种改进SIFT特征描述符和邻域投票相结合的图像匹配算法。使用8个邻域像素的平均值代替原始极值点,通过SIFT提取图像中的特征点,利用Sobel算子计算特征点的梯度幅度和方向,结合8个仿射形式的同心圆邻域生成64维描述符,根据欧氏距离确定初始匹配点,采用邻域投票的方法剔除错误的匹配点,实现图像的精确匹配。实验结果表明,该算法在显著提高匹配精度的同时缩短了匹配时间,对复杂场景的匹配性能明显提升。  相似文献   

20.
基于SIFT特征的合成孔径雷达景象匹配方法   总被引:2,自引:1,他引:2  
根据合成孔径雷达图像的特点,提出一种基于SIFT特征的合成孔径雷达(SAR)景象匹配的方法。首先利用改进的特征描述符初步提取实时图与参考图的SIFT 关键点;然后利用距离比和RANSAC算法去除错配,匹配出可靠的同名点对;最后计算反映实时图和参考图之间变换关系的转换参数,完成景象匹配。实验结果表明,本方法快速实用,有较强的有效性和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号