首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, a 5N  4 phase shifting algorithm comprising a polynomial window function and a discrete Fourier transform is developed to measure interferometrically the surface shape of a silicon wafer, with suppression of the coupling errors between the higher harmonics and the phase shift error. A new polynomial window function is derived on the basis of the characteristic polynomial theory by locating five multiple roots on the characteristic diagram. The characteristics of the 5N  4 algorithm are estimated with respect to the Fourier representation in the frequency domain. The phase error of the measurements performed using the 5N  4 algorithm is discussed and compared with those of measurements obtained using other conventional phase shifting algorithms. Finally, the surface shape of a 4-in. silicon wafer is measured using the 5N  4 algorithm and a wavelength tuning Fizeau interferometer. The accuracy of the measurement is discussed by comparing the amplitudes of the crosstalk noise calculated by other algorithms. The uncertainty of the entire measurement was 34 nm, better than that of any other conventional phase shifting algorithms.  相似文献   

2.
Optical thickness variation is a fundamental characteristic of transparent optical devices. When measuring this variation by using a wavelength-tuning Fizeau interferometer, the measurement accuracy depends on the phase-shifting algorithm being used. Therefore, the phase-shifting algorithm should compensate for any errors incurred during the measurement, including the phase-shift error, coupling errors, and bias modulation of intensity. Among these errors, however, the coupling errors between the higher harmonics resulting from the inner reflections of the transparent plate and phase-shift error have not previously been considered. This paper presents a derivation of a 19-sample phase-shifting algorithm that can compensate for the miscalibration and 1st-order nonlinearity of the phase shift, coupling errors, and bias modulation of intensity during wavelength tuning. The characteristics of the 19-sample algorithm were estimated with respect to the Fourier representation in the frequency domain. The phase error of measurements performed using the 19-sample algorithm was discussed and compared with that of measurements obtained using other conventional phase-shifting algorithms. Finally, the optical thickness variation of a fused silica parallel plate was obtained using a wavelength-tuning Fizeau interferometer and the 19-sample algorithm. The measurement accuracy was discussed by comparing the ripples in the crosstalk noise with those calculated using other phase-shifting algorithms. The experimental results indicated that the optical thickness variation measurement accuracy for the fused silica plate was approximately 2 nm.  相似文献   

3.
We propose a refractive index optical fiber sensor based on the micro cavities generated through the fiber catastrophic fuse effect. This sensor was tested in the measurement of solutions with refractive indices ranging from 1.3320 to 1.4280. The linear dependence of the reflection spectra modulation period as function of the surrounding environment refractive index leads to a resolution of 3 × 10−4 RIU. The proposed sensor is an innovative solution based on optical fiber damaged by the fuse effect, resulting in a cost effective solution.  相似文献   

4.
The Basic Angle Monitoring (BAM) system for satellite GAIA (2012–2018) will measure variation on the angle between the lines-of-sight between two telescopes with 2.5 prad uncertainty. It is a laser-interferometer system consisting of two optical benches with a number of mirrors and beamsplitters. The optical components need to be stable with respect to each other within 0.17 pm in position and 60 nrad in angle during measurements over a period of 6 h with 0.1 mK thermal stability. This paper aims at finding the most suitable mounting plane of the fused silica beamsplitters mounted onto the silicon carbide optical bench in the BAM system. These beamsplitters must be clamped mechanically. Based on a force stability analysis, mounting in the plane of light is a more stable solution than mounting on the reflective surface. However, when making a conceptual design the difficulty is making a design which has sufficient alignment stability to survive launch vibrations and a cool-down trajectory is more difficult.  相似文献   

5.
A subpixel edge location method based on orthogonal Jacobi–Fourier moments is proposed in this paper to improve the performance of optical fiber spherical coupling probe during dimensional measurement of micro-cavities with high aspect ratio. The effectiveness of the proposed method is proved through the performance test of a micro-hole measuring machine with optical spherical coupling probe. Test results indicate that a blind micro-hole of 400 μm in diameter can be experimentally measured at the depth of 2000 μm with a repeatability of 40 nm and an extremity resolution of 42 nm.  相似文献   

6.
A gas pressure sensor based on an all-fiber Fabry-Pérot interferometer (FFPI) is reported. The sensing head consists of a small section of silica rod spliced with a large offset between two single-mode fibers. The silica rod is used only as mechanical support so that an air cavity can be formed between both SMF. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen – sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively, were attained. The refractive index change on nitrogen environment by means of gas pressure variation was also determined and a sensitivity of 1526 nm/RIU was obtained. The response of the sensing device to temperature variations in air was also studied and a sensitivity of −14 pm/°C was attained.  相似文献   

7.
8.
Bi/Er co-doped optical fiber is one of the solutions for wave band extending technology which is very important for fiber amplifiers, lasers and communication system. Pump option can alter emission band of the Bi/Er co-doped fiber. In this paper, optimization of pump wavelength is proposed. A high Bi concentration co-doped Bi/Er optical fiber is tested as a sample to demonstrate pump wavelength influence to the emission spectrum band. An optical fiber measurement system is provided to measure out characteristics of active optical fibers. And some useful results and parameters of pump optimizing for Bi/Er co-doped optical fiber are discussed in detail. From this research, optimized pump wavelength is suggested around 1350 nm to get a wider continue spectrum covers from 1300 nm to 1600 nm.  相似文献   

9.
1 kg single-crystal silicon spheres are presently used as primary density standards in many countries. The absolute density of the spheres is determined from the measurements of their mass and volume in conformity with the definitions of the SI base units. Since the mass of the spheres is almost 1 kg, a mass comparison with the prototype of the kilogram can be performed with very low uncertainty. Absolute volume measurements for the spheres therefore have a crucial role in realizing a reliable density traceability system. To confirm the reliability of the volume measurement, the volume of a silicon sphere was measured independently using optical interferometers at the Korea Research Institute of Standards and Science (KRISS, Korea) and the National Metrology Institute of Japan (NMIJ, Japan). An optical interferometer with an etalon scanning system was used at KRISS. On the other hand, an optical interferometer with an optical frequency scanning system was used at NMIJ. The volume was measured at 20 °C and 0 Pa, and the results are in agreement with each other within their uncertainties. Details of the two interferometers and the comparison results are described.  相似文献   

10.
Nanocoining is a method of rapidly creating a cylindrical mold surface covered with features smaller than the wavelength of light. This mold can then be used in a roll-to-roll process to make surfaces whose functionality depends on the wavelength of the illumination. The die replaces the typical diamond tool used to produce overlapping grooves for applications such as reflective signs. The die has a face area approximately 20 μm2 that has been patterned in an FIB. It is mounted on a 2D ultrasonic actuator and follows an elliptical path that matches the surface speed of the moving workpiece during the short contact time and creates approximately 6000 features per impact. The spacing of die indents is controlled by the speed of the diamond turning machine axes such that a small overlap exists from previous indents as the die spirals around and along the mold surface. Because the die is small, the indentations must occur rapidly to make nanocoining a feasible process. This work focuses on the design and control of a nominally 40 kHz, 2D resonant actuator that is suitable for this process. A controller to automatically track resonance is described to maintain the elliptical motion during indentation. Methods of tuning the behavior of the actuator and maintaining a constant indent depth are proposed. Finally, 500 nm pitch feature indents were created on a brass workpiece at 40 kHz and scanning electron microscope (SEM) images of the features are provided.  相似文献   

11.
This paper presents a new optical method of coordinate measuring machine (CMM) verification. The proposed system based on a single-mode fiber optical-comb pulsed interferometer with a ball lens of refractive index 2 employed as the target. The target can be used for absolute-length measurements in all directions. The laser source is an optical frequency comb, whose repetition rate is stabilized by a rubidium frequency standard. The measurement range is confirmed to be up to 10 m. The diagonals of a CMM are easier to verify by the proposed method than by the conventional artifact test method. The measurement uncertainty of the proposed method is also smaller than that of the conventional method because the proposed measurement system is less affected by air temperature; it achieves an uncertainty of approximately 7 μm for measuring lengths of 10 m. The experimental results show that the measurement accuracy depends on noise in the interference fringe, which arises from airflow fluctuations and mechanical vibrations.  相似文献   

12.
Ceramics coatings are materials widely used in gas turbines to provide thermal shielding of superalloy materials against excessive turbine temperatures. However, measurement of their surface temperatures using conventional radiation thermometers, more so in the presence of high ambient radiation and low emissivity is quite challenging. A multispectral method employing curve fitting technique to measure the temperature of such targets in the range of 800–1200 K and ambient temperature of 1273 K is implemented in this paper through simulation. Several simulated experiments were carried out to identify emissivity models best suited for multispectral radiation thermometry applicable to ceramic coatings. The best emissivity model applicable to yttria-stabilized zirconia of coating thickness of 330 μm in the wavelength range of 3.5–3.9 μm was found to predict temperature with an error of less than 1.5% in the presence and absence of background noise.  相似文献   

13.
A displacement metrology and control system using an optical frequency comb generator and a dual Fabry-Perot cavity is developed with sub-nm accuracy. The optical frequency comb generator has expanded the displacement measurement range and the dual cavity system has suppressed the environmental fluctuation. We evaluated the absolute uncertainty of the developed displacement measurement system to be approximately 190 pm for the displacement of 14 μm and the accurate displacement control using a phase-locked loop was demonstrated with a resolution of approximately 24 pm.  相似文献   

14.
Jung-Hui Hsu  Shuo-Hung Chang 《Wear》2009,266(9-10):952-959
This work presents the tribological interaction between multi-walled carbon nanotubes (MWCNTs) and silica surface using lateral manipulation in the atomic force microscope (AFM). The MWCNT is mechanically manipulated by a pyramidal silicon probe of an AFM using the same scan mechanism as in the imaging mode. With a controlled normal force of the AFM probe, it was found that lateral force applied to the MWCNT could overcome the tribological adhesion between MWCNT and silica surface, causing individual MWCNT to rotate on the silica. According to the results, the shear stresses due to tribological interacting with the MWCNTs and the silica are 59.6 MPa and 64.8 MPa for the MWCNT 1 (100 nm diameter) and the MWCNT 2 (60 nm diameter), respectively. Experimental results show that the shear stress increases with the increasing rotation angle for each manipulation, from which we determine the linear fitting function. In addition, we determine the relationship between push point and pivot point to realize the rotation behavior. The implications of tribological interaction between the MWCNTs and silica surface are discussed in detail.  相似文献   

15.
A shear mode micro-probing system was constructed for gap measurement of a precision slot die coater with a nominal gap width of 90 μm and a length of 200 mm. A glass micro-stylus with a nominal tip ball diameter of 52.6 μm was oscillated by a tuning fork quartz crystal resonator with its oscillation direction parallel to the measurement surfaces. An on-line qualification setup was established to compensate for the influences of the uncertainty sources, including the water layers on the measurement surfaces. The measurement uncertainty of the measured gap width was estimated to be less than 100 nm.  相似文献   

16.
Thickness of each medium layer and velocity of ultrasonic wave propagation in each medium layer of the two-layer composite medium were measured simultaneously based on the method to collect phase information from continuous echo signals on front surface and undersurface. Such measurement was implemented under no interface echo and fixed total thickness of the testpiece. The method can be applied to any two kinds of two-layer composite medium. The paper only used a 35 mm thick copper–steel composite board as an experimental example. Calculated results demonstrated that measuring errors of both thickness and velocity of ultrasonic wave propagation are smaller than 0.2%, indicating the effectiveness of the proposed measurement method.  相似文献   

17.
This study presents the novel development of low cost, highly efficient blue laser direct-writing equipment for using mask-less laser lithography to manufacture periodic and aperiodic nanostructure patterns. The system includes a long-stroke linear motor precision stage (X, Y), a piezoelectric nano-precision stage (Y, θz), a 3-DOF (degrees of freedom) laser interferometer measurement system, and a blue laser direct-writing optical system. The 3-DOF laser interferometer measurement system gives the control system feedback for displacement (X, Y, θz) of the equipment. The laser processing equipment consists of a blue laser direct-writing optical head, a field-programmable gate array (FPGA) alignment interface, and an optical head servo controller. The optical head operates at a wavelength of 405 nm. Processing the nanostructures on thermo-reaction inorganic resists with precise control of the laser intensity, taking advantage of the threshold effect to exceed the limitations of optical diffraction, and reduces the nanostructure hole size. The equipment can be used to fabricate various periodic nanostructure patterns, aperiodic nanostructure patterns, and two-dimensional patterns. The equipment positioning accuracy is within 50 nm at a speed of 50 mm/s, and the minimum critical dimension can be achieved about 100 nm or so.  相似文献   

18.
To realize ultimately efficient signal processing, it is necessary to replace electrical signal processing circuits with optical ones. The optical micro-resonator, which localizes light at a certain spot, is an essential component in optical signal processing. Single-crystal calcium fluoride (CaF2) is the most suitable material for a highly efficient optical micro-resonator. The CaF2 resonator can only be manufactured by ultra-precision machining processes, because its crystal anisotropy does not allow the application of chemical etching. However, the optical micro-resonator's performance depends definitely on the surface integrity.This study investigated the relationship between surface quality after ultra-precision machining and crystal anisotropy. Firstly, crack initiation was investigated on the (1 0 0), (1 1 0), and (1 1 1) planes using the micro-Vickers hardness test. Secondly, brittle-ductile transition was investigated by orthogonal cutting tests. Finally, cutting performance of cylindrical turning was evaluated, which could be a suitable method for manufacturing the CaF2 resonator. The most difficult point in cylindrical turning of CaF2 is that the crystalline plane and cutting direction vary continuously. In order to manufacture the CaF2 optical micro-resonator more efficiently, analysis was conducted on crack initiation and surface quality of all crystallographic orientations from the perspective of slip system and cleavage.  相似文献   

19.
This paper presents time resolved quantitative evaluation of elastic stress waves in solid media by utilising an adaptation of the well-established laser Doppler vibrometry method. We show that the introduction of elastic stress waves in a transparent medium gives rise to detectable and quantifiable changes in the refractive index, which is proportional to stress. The method is tested for mechanical excitation at frequencies from 10 to 25 kHz in an acrylic bar. This refractometric quantification can measure internal strains as low as 1 × 10−11. Additionally, finite element analysis is conducted to gauge the validity of the results. In the presented work an acrylic bar is used, this method however should be applicable to any transparent solid.  相似文献   

20.
An optical-comb pulsed interferometer was developed for the positioning measurements of the industrial coordinate measuring machine (CMM); a rough metal ball was used as the target of the single-mode optical fiber interferometer. The measurement system is connected through a single-mode fiber more than 100 m long. It is used to connect a laser source from the 10th floor of a building to the proposed measuring system inside a CMM room in the basement of the building. The repetition frequency of a general optical comb is transferred to 1 GHz by an optical fiber-type Fabry–Pérot etalon. Then, a compact absolute position-measuring system is realized for practical non-contact use with a high accuracy of measurement. The measurement uncertainty is approximately 0.6 μm with a confidence level of 95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号