首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc worldwide with millions of lives claimed, human travel restricted and economic development halted. Leveraging city-level mobility and case data, our analysis shows that the spatial dissemination of COVID-19 can be well explained by a local diffusion process in the mobility network rather than a global diffusion process, indicating the effectiveness of the implemented disease prevention and control measures. Based on the constructed case prediction model, it is estimated that there could be distinct social consequences if the COVID-19 outbreak happened in different areas. During the epidemic control period, human mobility experienced substantial reductions and the mobility network underwent remarkable local and global structural changes toward containing the spread of COVID-19. Our work has important implications for the mitigation of disease and the evaluation of the socio-economic consequences of COVID-19 on society.  相似文献   

2.
Countries and cities around the world have resorted to unprecedented mobility restrictions to combat COVID-19 transmission. Here we exploit a natural experiment whereby Colombian cities implemented varied lockdown policies based on ID number and gender to analyse the impact of these policies on urban mobility. Using mobile phone data, we find that the restrictiveness of cities’ mobility quotas (the share of residents allowed out daily according to policy advice) does not correlate with mobility reduction. Instead, we find that larger, wealthier cities with more formalized and complex industrial structure experienced greater reductions in mobility. Within cities, wealthier residents are more likely to reduce mobility, and commuters are especially more likely to stay at home when their work is located in wealthy or commercially/industrially formalized neighbourhoods. Hence, our results indicate that cities’ employment characteristics and work-from-home capabilities are the primary determinants of mobility reduction. This finding underscores the need for mitigations aimed at lower income/informal workers, and sheds light on critical dependencies between socio-economic classes in Latin American cities.  相似文献   

3.
To date, the only effective means to respond to the spreading of the COVID-19 pandemic are non-pharmaceutical interventions (NPIs), which entail policies to reduce social activity and mobility restrictions. Quantifying their effect is difficult, but it is key to reducing their social and economic consequences. Here, we introduce a meta-population model based on temporal networks, calibrated on the COVID-19 outbreak data in Italy and applied to evaluate the outcomes of these two types of NPIs. Our approach combines the advantages of granular spatial modelling of meta-population models with the ability to realistically describe social contacts via activity-driven networks. We focus on disentangling the impact of these two different types of NPIs: those aiming at reducing individuals’ social activity, for instance through lockdowns, and those that enforce mobility restrictions. We provide a valuable framework to assess the effectiveness of different NPIs, varying with respect to their timing and severity. Results suggest that the effects of mobility restrictions largely depend on the possibility of implementing timely NPIs in the early phases of the outbreak, whereas activity reduction policies should be prioritized afterwards.  相似文献   

4.
The COVID-19 outbreak initiated from the Chinese city of Wuhan and eventually affected almost every nation around the globe. From China, the disease started spreading to the rest of the world. After China, Italy became the next epicentre of the virus and witnessed a very high death toll. Soon nations like the USA became severely hit by SARS-CoV-2 virus. The World Health Organisation, on 11th March 2020, declared COVID-19 a pandemic. To combat the epidemic, the nations from every corner of the world has instituted various policies like physical distancing, isolation of infected population and researching on the potential vaccine of SARS-CoV-2. To identify the impact of various policies implemented by the affected countries on the pandemic spread, a myriad of AI-based models have been presented to analyse and predict the epidemiological trends of COVID-19. In this work, the authors present a detailed study of different artificial intelligence frameworks applied for predictive analysis of COVID-19 patient record. The forecasting models acquire information from records to detect the pandemic spreading and thus enabling an opportunity to take immediate actions to reduce the spread of the virus. This paper addresses the research issues and corresponding solutions associated with the prediction and detection of infectious diseases like COVID-19. It further focuses on the study of vaccinations to cope with the pandemic. Finally, the research challenges in terms of data availability, reliability, the accuracy of the existing prediction models and other open issues are discussed to outline the future course of this study.  相似文献   

5.
As COVID-19 continues to pose significant public health threats, quantifying the effectiveness of different public health interventions is crucial to inform intervention strategies. Using detailed epidemiological and mobility data available for New York City and comprehensive modelling accounting for under-detection, we reconstruct the COVID-19 transmission dynamics therein during the 2020 spring pandemic wave and estimate the effectiveness of two major non-pharmaceutical interventions—lockdown-like measures that reduce contact rates and universal masking. Lockdown-like measures were associated with greater than 50% transmission reduction for all age groups. Universal masking was associated with an approximately 7% transmission reduction overall and up to 20% reduction for 65+ year olds during the first month of implementation. This result suggests that face covering can substantially reduce transmission when lockdown-like measures are lifted but by itself may be insufficient to control SARS-CoV-2 transmission. Overall, findings support the need to implement multiple interventions simultaneously to effectively mitigate COVID-19 spread before the majority of population can be protected through mass-vaccination.  相似文献   

6.
Current COVID-19 screening efforts mainly rely on reported symptoms and the potential exposure to infected individuals. Here, we developed a machine-learning model for COVID-19 detection that uses four layers of information: (i) sociodemographic characteristics of the individual, (ii) spatio-temporal patterns of the disease, (iii) medical condition and general health consumption of the individual and (iv) information reported by the individual during the testing episode. We evaluated our model on 140 682 members of Maccabi Health Services who were tested for COVID-19 at least once between February and October 2020. These individuals underwent, in total, 264 516 COVID-19 PCR tests, out of which 16 512 were positive. Our multi-layer model obtained an area under the curve (AUC) of 81.6% when evaluated over all the individuals in the dataset, and an AUC of 72.8% when only individuals who did not report any symptom were included. Furthermore, considering only information collected before the testing episode—i.e. before the individual had the chance to report on any symptom—our model could reach a considerably high AUC of 79.5%. Our ability to predict early on the outcomes of COVID-19 tests is pivotal for breaking transmission chains, and can be used for a more efficient testing policy.  相似文献   

7.
《工程(英文)》2021,7(7):914-923
Travel restrictions and physical distancing have been implemented across the world to mitigate the coronavirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness across regions and time. Based on the population mobility metrics derived from mobile phone geolocation data across 135 countries or territories during the first wave of the pandemic in 2020, we built a metapopulation epidemiological model to measure the effect of travel and contact restrictions on containing COVID-19 outbreaks across regions. We found that if these interventions had not been deployed, the cumulative number of cases could have shown a 97-fold (interquartile range 79–116) increase, as of May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the interventions, with variations in case severity seen across populations, regions, and seasons. Additionally, before effective vaccines are widely available and herd immunity is achieved, our results emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will likely be needed to avoid rapid resurgences and subsequent lockdowns.  相似文献   

8.
The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30, 2020, this disease had infected more than 6 million people globally, with hundreds of thousands of deaths. Therefore, there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems. This study uses gradient boosting regression (GBR) to build a trained model to predict the daily total confirmed cases of COVID-19. The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners. Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22, 2020, to May 30, 2020. The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method. The results reveal that the GBR model achieves 0.00686 root mean square error, the lowest among several comparative models.  相似文献   

9.
YouTube has become an educational and entertainment tool among Western European families, particularly during the COVID-19 pandemic. This study monitored the main channels for children aged 0–5 years by using the social media analysis (SNA) methodology from March 24, 2020 to August 24, 2020. The software used has been FanpageKarma, which allows the collection and interpretation of data. The results indicate not only a growth in the use of such channels during confinement, but also how their expansion is related to the evolution of the COVID-19, reflecting, in turn, the consequences of the government policies adopted. Social distancing generated a greater consumption of recreational content, but not a greater growth in educational content regardless of the country or culture.  相似文献   

10.
Short-term forecasts of the dynamics of coronavirus disease 2019 (COVID-19) in the period up to its decline following mass vaccination was a task that received much attention but proved difficult to do with high accuracy. However, the availability of standardized forecasts and versioned datasets from this period allows for continued work in this area. Here, we introduce the Gaussian infection state space with time dependence (GISST) forecasting model. We evaluate its performance in one to four weeks ahead forecasts of COVID-19 cases, hospital admissions and deaths in the state of California made with official reports of COVID-19, Google’s mobility reports and vaccination data available each week. Evaluation of these forecasts with a weighted interval score shows them to consistently outperform a naive baseline forecast and often score closer to or better than a high-performing ensemble forecaster. The GISST model also provides parameter estimates for a compartmental model of COVID-19 dynamics, includes a regression submodel for the transmission rate and allows for parameters to vary over time according to a random walk. GISST provides a novel, balanced combination of computational efficiency, model interpretability and applicability to large multivariate datasets that may prove useful in improving the accuracy of infectious disease forecasts.  相似文献   

11.
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread. This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment. X-ray images are one of the most classifiable images that are used widely in diagnosing patients’ data depending on radiographs due to their structures and tissues that could be classified. Convolutional Neural Networks (CNN) is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy. Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results. In this paper, we used SqueezNet with a modified output layer to classify X-ray images into three groups: COVID-19, normal, and pneumonia. In this study, we propose a deep learning method with enhance the features of X-ray images collected from Kaggle, Figshare to distinguish between COVID-19, Normal, and Pneumonia infection. In this regard, several techniques were used on the selected image samples which are Unsharp filter, Histogram equal, and Complement image to produce another view of the dataset. The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type (COVID-19, Normal and Pneumonia). In the first scenario, the model has been tested without any enhancement on the datasets. It achieved an accuracy of 91%. But, in the second scenario, the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%. The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images. A comparison of the outcomes demonstrated the effectiveness of our DL method for classifying COVID-19 based on enhanced X-ray images.  相似文献   

12.
Globally, the spread and severity of COVID-19 have been distinctly non-uniform. Seasonality was suggested as a contributor to regional variability, but the relationship between weather and COVID-19 remains unclear and the focus of attention has been on outdoor conditions. Because humans spend most of their time indoors and because most transmission occurs indoors, we here, instead, investigate the hypothesis that indoor climate—particularly indoor relative humidity (RH)—may be the more relevant modulator of outbreaks. To study this association, we combined population-based COVID-19 statistics and meteorological measurements from 121 countries. We rigorously processed epidemiological data to reduce bias, then developed and experimentally validated a computational workflow to estimate indoor conditions based on outdoor weather data and standard indoor comfort conditions. Our comprehensive analysis shows robust and systematic relationships between regional outbreaks and indoor RH. In particular, we found intermediate RH (40–60%) to be robustly associated with better COVID-19 outbreak outcomes (versus RH < 40% or >60%). Together, these results suggest that indoor conditions, particularly indoor RH, modulate the spread and severity of COVID-19 outbreaks.  相似文献   

13.
COVID-19, being the virus of fear and anxiety, is one of the most recent and emergent of various respiratory disorders. It is similar to the MERS-COV and SARS-COV, the viruses that affected a large population of different countries in the year 2012 and 2002, respectively. Various standard models have been used for COVID-19 epidemic prediction but they suffered from low accuracy due to lesser data availability and a high level of uncertainty. The proposed approach used a machine learning-based time-series Facebook NeuralProphet model for prediction of the number of death as well as confirmed cases and compared it with Poisson Distribution, and Random Forest Model. The analysis upon dataset has been performed considering the time duration from January 1st 2020 to16th July 2021. The model has been developed to obtain the forecast values till September 2021. This study aimed to determine the pandemic prediction of COVID-19 in the second wave of coronavirus in India using the latest Time-Series model to observe and predict the coronavirus pandemic situation across the country. In India, the cases are rapidly increasing day-by-day since mid of Feb 2021. The prediction of death rate using the proposed model has a good ability to forecast the COVID-19 dataset essentially in the second wave. To empower the prediction for future validation, the proposed model works effectively.  相似文献   

14.
COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world. Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases. In this study, we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases, deaths, and recoveries in Pakistan for the upcoming month until the end of July. For the decomposition of data, the Ensemble Empirical Mode Decomposition (EEMD) technique is applied. EEMD decomposes the data into small components, called Intrinsic Mode Functions (IMFs). For individual IMFs modelling, we use the Autoregressive Integrated Moving Average (ARIMA) model. The data used in this study is obtained from the official website of Pakistan that is publicly available and designated for COVID-19 outbreak with daily updates. Our analyses reveal that the number of recoveries, new cases, and deaths are increasing in Pakistan exponentially. Based on the selected EEMD-ARIMA model, the new confirmed cases are expected to rise from 213,470 to 311,454 by 31 July 2020, which is an increase of almost 1.46 times with a 95% prediction interval of 246,529 to 376,379. The 95% prediction interval for recovery is 162,414 to 224,579, with an increase of almost two times in total from 100802 to 193495 by 31 July 2020. On the other hand, the deaths are expected to increase from 4395 to 6751, which is almost 1.54 times, with a 95% prediction interval of 5617 to 7885. Thus, the COVID-19 forecasting results of Pakistan are alarming for the next month until 31 July 2020. They also confirm that the EEMD-ARIMA model is useful for the short-term forecasting of COVID-19, and that it is capable of keeping track of the real COVID-19 data in nearly all scenarios. The decomposition and ensemble strategy can be useful to help decision-makers in developing short-term strategies about the current number of disease occurrences until an appropriate vaccine is developed.  相似文献   

15.
COVID-19 is a pandemic that has affected nearly every country in the world. At present, sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans. However, widespread diseases, such as COVID-19, create numerous challenges to this goal, and some of those challenges are not yet defined. In this study, a Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian Process Regression (GPR) model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental conditions: namely, China, South Korea, Japan, Saudi Arabia, and Pakistan. Significant environmental and non-environmental features were taken as the input dataset, and confirmed COVID-19 cases were taken as the output dataset. A correlation analysis was done to identify patterns in the cases related to fluctuations in the associated variables. The results of this study established that the population and air quality index of a region had a statistically significant influence on the cases. However, age and the human development index had a negative influence on the cases. The proposed SSLPNN-based classification model performed well when predicting the classes of confirmed cases. During training, the binary classification model was highly accurate, with a Root Mean Square Error (RMSE) of 0.91. Likewise, the results of the regression analysis using the GPR technique with Matern 5/2 were highly accurate (RMSE = 0.95239) when predicting the number of confirmed COVID-19 cases in an area. However, dynamic management has occupied a core place in studies on the sustainable development of public health but dynamic management depends on proactive strategies based on statistically verified approaches, like Artificial Intelligence (AI). In this study, an SSLPNN model has been trained to fit public health associated data into an appropriate class, allowing GPR to predict the number of confirmed COVID-19 cases in an area based on the given values of selected parameters. Therefore, this tool can help authorities in different ecological settings effectively manage COVID-19.  相似文献   

16.
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalized with COVID-19 using a large dataset (N = 21 000 − 157 000) from the Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2 and 17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalized lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.  相似文献   

17.
The COVID-19 virus exhibits pneumonia-like symptoms, including fever, cough, and shortness of breath, and may be fatal. Many COVID-19 contraction experiments require comprehensive clinical procedures at medical facilities. Clinical studies help to make a correct diagnosis of COVID-19, where the disease has already spread to the organs in most cases. Prompt and early diagnosis is indispensable for providing patients with the possibility of early clinical diagnosis and slowing down the disease spread. Therefore, clinical investigations in patients with COVID-19 have revealed distinct patterns of breathing relative to other diseases such as flu and cold, which are worth investigating. Current supervised Machine Learning (ML) based techniques mostly investigate clinical reports such as X-Rays and Computerized Tomography (CT) for disease detection. This strategy relies on a larger clinical dataset and does not focus on early symptom identification. Towards this end, an innovative hybrid unsupervised ML technique is introduced to uncover the probability of COVID-19 occurrence based on the breathing patterns and commonly reported symptoms, fever, and cough. Specifically, various metrics, including body temperature, breathing and cough patterns, and physical activity, were considered in this study. Finally, a lightweight ML algorithm based on the K-Means and Isolation Forest technique was implemented on relatively small data including 40 individuals. The proposed technique shows an outlier detection with an accuracy of 89%, on average.  相似文献   

18.
The unprecedented restrictions imposed due to the COVID-19 pandemic altered our daily habits and severely affected our well-being and physiology. The effect of these changes is yet to be fully understood. Here, we analysed highly detailed data on 169 participants for two to six months, before and during the second COVID-19 lockdown in Israel. We extracted 12 well-being indicators from sensory data of smartwatches and from self-reported questionnaires, filled daily using a designated mobile application. We found that, in general, lockdowns resulted in significant changes in mood, sleep duration, sport duration, social encounters, resting heart rate and number of steps. Examining subpopulations, we found that younger participants (aged 20–40 years) suffered from a greater decline in mood and number of steps than older participants (aged 60–80 years). Likewise, women suffered from a higher increase in stress and reduction in social encounters than men. Younger early chronotypes did not increase their sleep duration and exhibited the highest drop in mood. Our findings underscore that while lockdowns severely impacted our well-being and physiology in general, greater damage has been identified in certain subpopulations. Accordingly, special attention should be given to younger people, who are usually not in the focus of social support, and to women.  相似文献   

19.
The virus SARS-CoV2, which causes coronavirus disease (COVID-19) has become a pandemic and has spread to every inhabited continent. Given the increasing caseload, there is an urgent need to augment clinical skills in order to identify from among the many mild cases the few that will progress to critical illness. We present a first step towards building an artificial intelligence (AI) framework, with predictive analytics (PA) capabilities applied to real patient data, to provide rapid clinical decision-making support. COVID-19 has presented a pressing need as a) clinicians are still developing clinical acumen to this novel disease and b) resource limitations in a surging pandemic require difficult resource allocation decisions. The objectives of this research are: (1) to algorithmically identify the combinations of clinical characteristics of COVID-19 that predict outcomes, and (2) to develop a tool with AI capabilities that will predict patients at risk for more severe illness on initial presentation. The predictive models learn from historical data to help predict who will develop acute respiratory distress syndrome (ARDS), a severe outcome in COVID-19. Our results, based on data from two hospitals in Wenzhou, Zhejiang, China, identified features on initial presentation with COVID-19 that were most predictive of later development of ARDS. A mildly elevated alanine aminotransferase (ALT) (a liver enzyme), the presence of myalgias (body aches), and an elevated hemoglobin (red blood cells), in this order, are the clinical features, on presentation, that are the most predictive. The predictive models that learned from historical data of patients from these two hospitals achieved 70% to 80% accuracy in predicting severe cases.  相似文献   

20.
Carlos Dora 《Sadhana》2007,32(4):285-292
The burden on health-related issues due to unplanned urban policies is higher despite the present knowledge of interventions and availability of current technologies. This burden could increase substantially, given the rapid growth in urban populations and the application of partial or misguided solutions to urban transport problems. Part of the reason is the failure to consider holistically the health, social and environment consequences and the related costs of individual travel choices and government policies in the field of traffic and mobility. Urban transport-related issues and its impact on health, environment, costs and benefits are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号