首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过混合粉末半固态成形法制备B_4C增强铝基复合材料。先将Al7075元素粉末在机械搅拌状态下逐渐添加到酒精溶液中,然后通过高能球磨将Al7075元素粉末与B_4C颗粒混合,最后将Al7075/B_4C混合粉末在半固体状态下冷压成型。研究基体颗粒尺寸(20、45和63μm)、增强相的体积分数(5%、10%和20%)和半固态压制压力(50和100 MPa)对复合材料的形貌、显微组织、密度、硬度、压缩强度和抗弯强度的影响。实验结果表明,当大的B_4C颗粒(45μm)分布在小的基体相颗粒(20μm)中时,材料的显微组织最均匀。基体颗粒尺寸大于增强相颗粒尺寸的复合材料中团聚量大于10%(体积分数)。团聚区域的液相难以渗透到孔隙中,降低复合材料的密度和强度。采用20μm Al7075和20%(体积分数)45μm B_4C粉末在100 MPa下压制的复合材料表现出最高的硬度值(HV 190)和抗压强度(336 MPa)  相似文献   

2.
采用低能球磨和放电等离子烧结原位制备(TiB+TiC)/Ti-6Al-4V复合材料,研究了烧结温度和B_4C添加量对复合材料组织性能的影响。结果表明,在1 000~1 150℃范围内,1 100℃烧结时增强相呈不连续网状,复合材料的屈服强度、抗压强度和工程应变均最好;基体合金组织为魏氏组织,复合材料基体为厚片状α相和片间β相组织,晶粒明显细化,显微硬度随增强相含量的增多而提高,而工程应变随之降低。强度在B_4C含量为2%时达到最高,屈服强度和抗拉强度分别为1 410.55MPa和1 771.65MPa。  相似文献   

3.
Al-Zr-O-B体系原位合成颗粒增强铝基复合材料及其性能   总被引:7,自引:2,他引:7  
研究了采用Al-Zr(CO3)2-KBF4组元通过熔体反应法原位合成颗粒增强铝基复合材料.X射线衍射(XRD)和扫描电镜(SEM)分析表明:内生增强相颗粒为ZrAl3、ZrB2和Al2O3,粒度为3~4μm,且在基体中弥散分布.复合材料的力学性能和干滑动磨损特性研究表明:在反应物加入量为0~20%(质量百分数)范围内时,复合材料的抗拉强度和屈服强度较纯铝基体明显提高,当反应物加入量为20%时,抗拉强度为150.3 MPa,屈服强度为113.7 MPa.当反应物加入量为5%时延伸率最佳为33%,属塑性断裂.复合材料的耐磨性较铝基体显著提高,当反应物加入量为10%时耐磨性最好.铝基体的磨损机制是粘着磨损,而(ZrAl3 ZrB2 Al2O3)p/Al复合材料的磨损机制是磨粒磨损.  相似文献   

4.
采用热压烧结在1680℃下制备得到了(100-x)B_4C-x Ti(x=0~40)(质量分数,%)陶瓷,并研究了Ti(x=0~40)添加量对B_4C陶瓷微观形貌及力学性能的影响。结果表明:Ti元素可以促进B_4C陶瓷的烧结,其相对密度随Ti含量增加先增大后趋于稳定,当Ti添加量达到40%时,样品相对密度约为99.5%。XRD结果表明,样品中除B_4C和未反应的Ti之外,还有Ti C和Ti B_2相出现,且随Ti含量增加,两者的衍射峰逐渐增强;随Ti添加量增加,样品的抗弯强度、硬度以及断裂韧性均增大,在Ti添加量为40%时,分别达到481 MPa、8280 MPa、18.55 MPa·mm~(1/2)。分析其原因认为,由于Ti与B_4C发生界面反应,在界面处生成Ti C和Ti B_2相过渡层,联结了B_4C基体与Ti,起到了桥联增韧的作用,使材料的力学性能得到改善。  相似文献   

5.
采用超声处理和挤压铸造制备具有不同纳米Si C颗粒含量的复合材料,并研究Si Cp含量对纳米复合材料显微组织和力学性能的影响。结果表明,随着纳米颗粒的加入,显微组织明显细化,α(Al)晶粒形貌由粗大枝晶向玫瑰晶转变,长针状共晶硅逐渐变短并且圆整。随着颗粒含量的增加,复合材料的抗拉强度、屈服强度和伸长率均持续增加。特别是,当Si C加入量达到2%(质量分数)时,抗拉强度、屈服强度和伸长率分别为259 MPa、144 MPa和5.3%,与基体合金相比分别增加19%、69%和15%。强度的提升是由于Hall-Petch强化和Orowan强化。  相似文献   

6.
B_4C粒度配比对B_4C-Al复合材料显微组织与力学性能的影响   总被引:1,自引:0,他引:1  
在B_4C预烧体中真空熔渗铝制备B_4C-Al复合材料,研究不同粒度配比对复合材料显微组织和力学性能的影响.结果表明:B_4C-Al复合材料主要由B_4C、Al、AlB_2和Al_3BC等相组成;随着细颗粒B_4C(d_(50)=1 μm)含量的增加,复合材料的HRA硬度逐渐降低,抗弯强度逐渐增大,断裂韧性先增大后稍微降低,当细颗粒B_4C含量为40%(质量分数)时,复合材料的气孔率、硬度HRA、抗弯强度和断裂韧性分别为1.08%、71.7、505.8 MPa和6.41 MPa·m~(1/2);延性铝的加入和细颗粒B_4C的增加是造成材料断裂韧性提高的主要原因;随着Al渗入量的增加,复合材料断口中金属撕裂棱及韧窝的比例增加.  相似文献   

7.
以稀土氧化物CeO_2为烧结助剂,采用放电等离子(SPS)烧结工艺制备了B_4C基复相陶瓷。研究了CeO_2添加量(质量分数,%)对B_4C基体的致密化和烧结体硬度的影响,并与纯B_4C样品进行对比。借助X射线衍射和扫描电镜分析了复合材料的物相组成和微观结构。结果表明,CeO_2粉体的添加可以显著提高SPS条件下碳化硼的烧结性能。生成相CeB_6填充在B_4C晶粒之间,提高了制品的相对密度。当CeO_2添加量为4%时,在烧结压力35 MPa和1750℃下烧结,样品的相对密度最高(96.7%),其洛氏硬度可达到89.6(HRA)。  相似文献   

8.
采用真空熔渗法,通过对B_4C-C素坯于1550℃渗Si,得到了较致密的反应结合碳化硼陶瓷复合材料。通过生成Si C纳米颗粒对材料进行强化,并探讨了纳米Si C颗粒对材料组织与性能的影响及其强韧化机理。实验表明,材料包括B_4C、Si、Si C和B_(12)(C,Si,B)_3四相。结果表明,选取酚醛树脂作为外加碳源,可在材料中成功引入细小的Si C纳米颗粒,使复合材料的抗折强度、断裂韧性和维氏硬度较以炭黑为外加碳源的材料,分别增加了35%、36%和15%,分别高达442 MPa、4.9 MPa·m~(1/2)和23 GPa。  相似文献   

9.
Al基复合材料可以充分发挥增强体与Al合金的性能协同作用,在保持Al合金低密度和良好的加工性能的基础上,进一步显著提高其强度和韧性。因此,在新一代运动器械中复合材料展现出了令人瞩目的应用前景。采用粉末冶金法制备了40vol%B_4C/6061Al复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、透射电子显微镜(TEM)和拉伸试验等对B_4C/6061Al复合材料组织、拉伸性能及强化机理进行研究。结果表明,试验制备出的40vol%B_4C/6061Al复合材料组织致密,颗粒分散均匀,无较明显的孔洞出现。复合材料的抗拉强度较纯6061Al合金的增加约58.43%,且具有较好的加工成形性能。TEM表征结果表明,复合材料的强化效果不仅来源于B_4C颗粒的引入,还得益于B_4C颗粒与Al界面的良好结合以及Al基体中弥散分布的球形β'纳米析出相。  相似文献   

10.
纳米SiC颗粒增强AM60镁合金组织性能的研究   总被引:4,自引:0,他引:4  
通过对纳米SiC颗粒的预处理,使用搅熔复合铸造工艺,制备了纳米SiC颗粒增强AM60铸造镁合金材料.研究了纳米SiC颗粒对镁合金的显微组织、力学性能和硬度等的影响.结果表明,在镁合金中添加纳米SiC颗粒能够细化其组织,提高材料的综合力学性能.当纳米SiC颗粒加入量(体积分数)为1.0%时,纳米颗粒增强AM60镁合金的抗拉强度、伸长率和硬度(HB)分别达到240 MPa、16.0%和53.9,较相同工艺下未加纳米颗粒的AM60分别提高了12.1%、40.3%和11.6%.同时对纳米SiC颗粒对镁合金的强化机理进行了探讨.  相似文献   

11.
开发一种高效液态搅拌铸工艺制备AA6061-31%B_4C复合材料。研究该工艺的关键参数,并对复合材料的显微组织和力学性能进行表征。结果表明,真空搅拌/浇铸、B_4C/Mg加料方式和铸锭冷却是AA6061-31%B_4C复合材料成功制备的关键参数。化学腐蚀检测结果证实复合材料中含有设计含量的B_4C;X射线荧光检测表明,复合材料基体中Mg和Si含量符合工业标准;扫描电镜和X射线衍射结果表明,B_4C颗粒均匀分布在基体中,颗粒之间为时效析出的Mg2Si相;拉伸结果表明,AA6061-31%B_4C复合材料的抗拉强度为340 MPa,比AA1100-31%B_4C复合材料的抗拉强度提高了112.5%,这归因于基体铝合金强度的大幅提高。  相似文献   

12.
以A357-Na_2B_4O_7-K_2ZrF_6体系与A357-KBF_4-K_2ZrF_6体系合成原位颗粒增强A357铝基复合材料。结果表明,增强相含量小于1.5%,仅合成Al_3Zr一种增强相,增强相含量为2%时,ZrB_2与Al_3Zr增强相同时合成;A357-K_2ZrF_6-KBF_4体系合成原位颗粒增强复合材料时ZrB_2颗粒为增强相;A357-Na_2B_4O_7-K_2ZrF_6体系合成复合材料的抗拉强度随增强相含量的增加呈先增加后减小的趋势,最大值为182 MPa,是基体的1.17倍;反应体系A357-K_2ZrF_6-KBF_4合成复合材料抗拉强度随增强相含量增加而呈上升趋势,最大值为192 MPa,是基体的1.24倍;两种复合材料断口上存在大量韧窝,表明断裂方式均为塑性断裂。  相似文献   

13.
采用印度沿海锆石粉与硅线石海滩砂反应烧结,制备含20%(质量分数)氧化锆的莫来石-氧化锆复合材料。添加4%~12%(摩尔分数)的氧化钙作为添加剂。研究了添加剂对压实性能、显微组织、力学性能和热力性能的影响。添加氧化钙可以使压实温度从1600°C降低至1550°C。氧化钙可以形成少量的液相(铝硅酸钙),有利于烧结进行。添加4%氧化钙可使复合材料的晶粒尺寸减小,当添加量大于4%时,材料的晶粒尺寸随氧化钙添加量的增加而增大。添加4%氧化钙样品的弯曲强度约为225MPa,断裂韧度约为6MPa·m~(1/2),且抗热冲击性能得到明显提高。氧化钙可以稳定四方氧化锆,从而提高材料的力学性能。  相似文献   

14.
通过设计两种换向轧制工艺,采用2 800 mm四辊可逆热轧机成功制备了满足GJB 2505A—2008标准要求的3.5 mm厚TA6钛合金薄板,并研究了轧制工艺对TA6钛合金板材显微组织和力学性能的影响。研究结果表明:采用这两种不同轧制工艺轧制TA6钛合金板材,当总变形量为72%时,板材内部均为混乱的魏氏组织,且组织均匀性差,纵横向抗拉强度差值大于50 MPa;随着变形量增大,组织不断细化,强度不断提高,当变形量达到89%以上时,与B工艺相比,采用A工艺得到的板材组织均匀性更好,且纵横向抗拉强度差值小于20 MPa。采用A工艺制备的TA6钛合金板材退火后为细小均匀的再结晶组织,且力学性能满足G...  相似文献   

15.
采用半固态-液态搅拌铸造法制备了Si C颗粒增强铝基复合材料。研究了Si C颗粒含量(质量分数分别为0、5%、10%、15%和20%)对铝基复合材料组织及力学性能的影响。结果显示:添加少量Si C颗粒时,Si C颗粒在基体中分散均匀;当Si C质量分数达到15%时,Si C颗粒团聚较严重。随着Si C颗粒含量的增加,复合材料的硬度和抗拉强度先升高后降低。原因是Si C颗粒的位错强化作用,使得铝基复合材料的力学性能得到提升。随着Si C颗粒含量的增加,与界面结合良好的含Mg相数量减少,并且Si C颗粒团聚严重,铝基复合材料的力学性能降低。  相似文献   

16.
采用球磨工艺将碳化硅颗粒与TC11钛合金粉末混合,通过放电等离子体烧结工艺制备了碳化硅颗粒增强钛基复合材料(SiCp/TC11),并研究了复合材料的微观结构和力学性能。结果表明,SiCp/TC11复合材料内部无孔洞,烧结致密。碳化硅颗粒与钛基体发生反应,生成碳化钛颗粒。随着碳化硅颗粒含量的增加,SiCp/TC11复合材料的晶粒尺寸逐渐减小,维氏硬度升高。添加0.5%(质量分数)的碳化硅颗粒后,SiCp/TC11复合材料的室温屈服强度和抗拉强度分别提高了31.3%和14.1%,500℃高温抗拉强度提高了6.9%。SiCp/TC11复合材料强度的提高主要归因于晶粒细化、固溶强化以及载荷传递。  相似文献   

17.
《铸造技术》2016,(5):848-852
采用半固态机械搅拌铸造法,制备了增强体平均粒径50 nm的Si C颗粒增强镁基复合材料(n-Si Cp/Mg9Al),分别对不同质量分数纳米颗粒、不同搅拌时间和不同搅拌温度时,复合材料的微观组织和力学性能进行了研究。结果表明,随着Si C含量的增加,合金基体组织先细化后又出现变粗的现象,适当延长搅拌时间能更有效地细化组织,在较低温度下搅拌可以更明显地细化复合材料的微观组织。合金抗拉强度随着Si C含量的增加先增加后降低,在Si C含量为1.5%时最好,为198 MPa。在含量为2%时又有所降低,但是高于不加Si C时。搅拌时间为15 min时,复合材料的屈服强度、抗拉强度较之基体分别提高了12.8%、22%,断后伸长率由基体合金的2%提升到4%。继续延长搅拌时间到30 min,材料的室温拉伸性能出现明显恶化。不同搅拌温度下Si Cp/Mg9Al纳米复合材料与铸态Mg9Al合金相比其室温拉伸性能有明显提高,搅拌温度为600℃的Si Cp/Mg9Al纳米复合材料的室温拉伸性能最好,其屈服强度、抗拉强度和断后伸长率分别为106 MPa、155 MPa和4%。  相似文献   

18.
采用粉末冶金法制备B_4C含量为33%的铝基复合材料毛坯,采用不同的二次加工工艺:挤压+轧制和热压+轧制;对采用两种不同的二次加工工艺成型的板材进行显微组织和力学性能对比。结果表明:采用挤压+轧制的B_4C/Al复合材料中没有大尺寸的显微缺陷,组织分布比较均匀、致密;且金相组织中增强相出现很明显的沿轧制方向线性分布的特征。采用挤压+轧制的B_4C/Al复合材料抗拉强度提高,但是屈服强度降低,屈强比减小,增加了复合材料作为承载结构时的安全性能。采用挤压+轧制的复合材料板材B_4C颗粒与基体的结合强度较高,B_4C颗粒断裂较少,断裂的方式基本是裂纹以穿晶或者沿着颗粒拔出的凹坑处扩展。  相似文献   

19.
采用Al-Zr(CO3)2-KBF4体系用熔体反应法成功合成了新型颗粒增强铝基复合材料.XRD和SEM分析表明, Zr(CO3)2和KBF4与铝液反应生成了ZrB2、Al2O3、Al3Zr颗粒,颗粒尺寸细小,且弥散分布于基体中,其平均尺寸约为80~90 nm;拉伸试验结果显示.Al-Zr(CO3)2-KBF4体系反应生成的复合材料的抗拉强度和屈服强度随着反应物加入量的增加均显著提高,复合材料的抗拉强度为150.3 MPa,较铝基体的78.0 MPa提高了 92.7%;屈服强度为113.7 MPa,较铝基体的42.0 MPa提高了170.7%;复合材料的伸长率先升后降;由复合材料的拉伸断口SEM可知,随着反应物质量增加,塑性变形区减小,但仍然是塑性断裂.  相似文献   

20.
采用高能球磨(HEBM)和放电等离子烧结(SPS)工艺成功制备出微纳B_4C/Ti颗粒增强铜基复合材料(CTBCs),通过X射线衍射(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)以及能谱(EDS)等测试手段对其微观组织形貌进行表征,并测定了烧结态试样的致密度和力学性能。结果表明,(B_4C+Ti)颗粒在基体中均匀分布,增强体与铜基体界面结合良好,且其结合形式为冶金结合和机械结合并存。复合材料的显微硬度、拉伸屈服强度、抗拉强度和延伸率等力学性能相较于纯铜试样得到显著提高,这主要归因于载荷传递、细化晶粒与热错配等强化机制。复合材料的拉伸断口表现出明显的韧性断裂特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号