首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This paper develops a kinematic path‐tracking algorithm for a nonholonomic mobile robot using an iterative learning control (ILC) technique. The proposed algorithm produces a robot velocity command, which is to be executed by the proper dynamic controller of the robot. The difference between the velocity command and the actual velocity acts as state disturbances in the kinematic model of the mobile robot. Given the kinematic model with state disturbances, we present an ILC‐based path‐tracking algorithm. An iterative learning rule with both predictive and current learning terms is used to overcome uncertainties and the disturbances in the system. It shows that the system states, outputs, and control inputs are guaranteed to converge to the desired trajectories with or without state disturbances, output disturbances, or initial state errors. Simulations and experiments using an actual mobile robot verify the feasibility and validity of the proposed learning algorithm. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
This paper investigates variable-gain PD-type iterative learning control (ILC) for a class of nonlinear time-varying systems to well balance high-gain convergence rate and low-gain noise transmission. Different from the classic PD-type ILC, the control gains of the proposed method are variable. Each variable-gain consists of an amplitude-dependent term and an iteration-varying term. The amplitude-dependent terms vary with the amplitudes of tracking error and derivative of tracking error, and the iteration-varying terms are increasing along the iteration axis. The proposed ILC achieves a faster convergence rate than low-gain ILC and higher tracking accuracy with limited noise amplification than high-gain ILC. Moreover, the convergence condition of the proposed method in the presence of external noise is provided. Simulation and experimental results demonstrate the effectiveness of the proposed method.  相似文献   

3.
In recent years, more research in the control field has been in the area of self‐learning and adaptable systems, such as a robot that can teach itself to improve its performance. One of the more promising algorithms for self‐learning control systems is Iterative Learning Control (ILC), which is an algorithm capable of tracking a desired trajectory within a specified error limit. Conventional ILC algorithms have the problem of relatively slow convergence rate and adaptability. This paper suggests a novel approach by combining system identification techniques with the proposed ILC approach to overcome the aforementioned problems. The ensuing design procedure is explained and results are accrued from a number of simulation examples. A key point in the proposed scheme is the computation of gain matrices using the steepest descent approach. It has been found that the learning rule can be guaranteed to converge if certain conditions are satisfied. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
In this paper, we investigate the servo parameters and axis dynamics influences on the contouring accuracy for practical applications such as contouring control of manufacturing systems (robot, machine tool...). The analytical formulation of contouring error in the case of straight line, circle and corner crossing is derived using a simplified axis drive model including the main servo parameters and dominating mechanical mode. The effectiveness of the proposed formulation in estimating the evolution of the final contour error is demonstrated experimentally on a two-axis machine tool.  相似文献   

5.
一类未知非线性系统的智能迭代学习控制   总被引:6,自引:0,他引:6       下载免费PDF全文
从自适应的角度设计迭代学习控制,将神经网络引入迭代学习控制中。学习控制与自适应控制相结合,使得对网络权值的学习和跟踪控制同时进行,克服 了经典迭代学习控制的一些缺陷。基于Lyapunov直接方法,证明了整个控制系统的稳定并实现了任意精度的跟踪。实例仿真结果说明了算法 的有效性及其所具有的优点。  相似文献   

6.
为了提高迭代学习控制方法在间歇过程轨迹跟踪问题中的收敛速度,本文将批次间的比例型迭代学习控制与批次内的模型预测控制相结合,提出了一种综合应用方法.首先根据间歇过程的线性模型,预测出比例型迭代学习控制的系统输出,然后在批次内采用模型预测控制,通过极小化一个二次型目标函数来获得控制增量.该方法可使系统输出跟踪期望轨迹的速度比比例型迭代学习控制方法更快些.最后通过仿真实例验证了该方法的有效性.  相似文献   

7.
In this paper, both output-feedback iterative learning control (ILC) and repetitive learning control (RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.   相似文献   

8.
There has been a tremendous amount of research in machine tool servomechanism control, contour control, and machining force control; however, to date these technologies have not been tightly integrated. This paper develops a hierarchical optimal control methodology for the simultaneous regulation of servomechanism positions, contour error, and machining forces. The contour error and machining force process reside in the top level of the hierarchy where the goals are to (1) drive the contour error to zero to maximize quality and (2) maintain a constant cutting force to maximize productivity. These goals are systematically propagated to the bottom level, via aggregation relationships between the top and bottom-level states, and combined with the bottom-level goals of tracking reference servomechanism positions. A single controller is designed at the bottom level, where the physical control signals reside, that simultaneously meets both the top and bottom-level goals. The hierarchical optimal control methodology is extended to account for variations in force process model parameters and process parameters. Simulations are conducted for four machining operations that validate the developed methodology. The results illustrate the controller can simultaneously achieve both the top and bottom-level goals.  相似文献   

9.
超精密机床的变增益交叉耦合控制研究   总被引:1,自引:0,他引:1  
超精密加工的轮廓精度控制直接影响到工件的加工精度,交叉耦合控制算法通过对2轴进行协调而影响轮廓控制精度。在分析超精密数控机床误差模型的基础上,将变增益交叉耦合控制算法引入超精密数控机床的伺服控制。实验结果表明变增益交叉耦合控制算法可以在不改变位置环的情况下,有效提高系统的轮廓精度。  相似文献   

10.
In this note, a simple linear matrix inequality (LMI) design method is proposed for iterative learning control (ILC). The design can ensure a monotonic error decay in 2‐norm. Experimental results on a SCARA robot shows that the design can achieve nearly perfect tracking. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
Mobile robot machining provides more flexible machining mode compared to the robot machining with a fixed base. However, its machining accuracy is frequently questioned. This paper focuses on the accuracy analysis in mobile robot machining. To evaluate the machining error qualitatively, the tool center point (TCP) error index is defined as the distance between the TCP and the designed machining point. The different error sources acting on the TCP error index are enumerated, and the theoretical accuracy analysis is proposed to eliminate the TCP error. The mobile robot machining strategy is then proposed based on the accuracy analysis. To ensure high machining accuracy, the global measurement system locates the position of the workpiece and the mobile platform. The force-controlled grinding head is used to compensate the TCP error. Experimental results show that the TCP error during mobile robot machining is lower than 40 mm, which mainly introduced by the calibration of the workpiece. The force-controlled grinding head can compensate the TCP error and the fluctuation of the grinding force under the control is lower than ±2 N.  相似文献   

12.
在双轴联动系统中,减小轮廓误差和提高轨迹跟踪的能力是位置控制的主要目标.为提高轨迹跟踪的稳态精度和动态性能,本文提出了双轴广义预测交叉耦合控制策略(generalized predictive cross-coupling control,GPCCC).首先将广义预测算法应用于双轴联动控制中,根据已知轨迹进行多步预测、滚动优化和反馈校正来提高双轴控制性能,其次采用交叉耦合结构将轮廓误差作为反馈量来修正广义预测控制的给定轨迹.最后,通过两台永磁同步电机驱动的双轴联动系统完成实验,实验效果证明了所提出的控制策略在保证轨迹跟踪精度的同时,可以有效提高动态响应速度,尤其在轨迹转折点处,相比于传统PID交叉耦合结构,可以明显减小轮廓误差.  相似文献   

13.
A novel control technique is proposed by combining iterative learning control (ILC) and model predictive control (MPC) with updating-reference trajectory for point-to-point tracking problem of batch process. In this paper, a batch-to-batch updating-reference trajectory, which passes through the desired points, is firstly designed as the tracking trajectory within a batch. The updating control law consists of P-type ILC part and MPC part, in which P-type ILC part can improve the performance by learning from previous executions and MPC part is used to suppress the model perturbations and external disturbances. Convergence properties of the integrated predictive iterative learning control (IPILC) are analyzed theoretically, and the sufficient convergence conditions of output tracking error are also derived for a class of linear systems. Comparing with other point-to-point tracking control algorithms, the proposed algorithm can perform better in robustness. Furthermore, updating-reference relaxes the constraints for system outputs, and it may lead to faster convergence and more extensive range of application than those of fixed-reference control algorithms. Simulation results on typical systems show the effectiveness of the proposed algorithm.  相似文献   

14.
15.
For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.  相似文献   

16.
This paper addresses the problem of iterative learning control (ILC) for a class of nonlinear continuous‐time systems with higher relative degree. The proposed ILC solution is a family of updating laws using differentiations of tracking error with the order less than the system relative degree. A unified convergence condition for this family of ILC updating laws is provided and proved to be independent of the highest order of differentiation. The application to path tracking of a robotic manipulator is presented to illustrate the effectiveness of the proposed method.  相似文献   

17.
A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.  相似文献   

18.
基于向量图分析的一种迭代学习控制算法及其鲁棒性   总被引:3,自引:1,他引:3  
为了增强迭代学习控制的鲁棒性,加快学习过程的收敛速度,而又不过多地依赖于系统内部信息,本文基于向量图分析思路,利用输入空间的向量构造三角形修正结构,得到了一种新的迭代学习控制算法.该算法根据跟踪误差的大小,调节输入控制量在三角形的一条边上滑动,在跟踪误差较大时,算法能找到控制期望的大致位置并加速收敛,在跟踪误差较小时,能将控制量稳定在其期望的很小邻域内,理论上证明了该邻域直径大小为跟踪误差的二阶无穷小.数值仿真结果说明了它的有效性和优越性.  相似文献   

19.
Real‐life work operations of industrial robotic manipulators are performed within a constrained state space. Such operations most often require accurate planning and tracking a desired trajectory, where all the characteristics of the dynamic model are taken into consideration. This paper presents a general method and an efficient computational procedure for path planning with respect to state space constraints. Given a dynamic model of a robotic manipulator, the proposed solution takes into consideration the influence of all imprecisely measured model parameters, making use of iterative learning control (ILC). A major advantage of this solution is that it resolves the well‐known problem of interrupting the learning procedure due to a high transient tracking error or when the desired trajectory is planned closely to the state space boundaries. The numerical procedure elaborated here computes the robot arm motion to accurately track a desired trajectory in a constrained state space taking into consideration all the dynamic characteristics that influence the motion. Simulation results with a typical industrial robot arm demonstrate the robustness of the numerical procedure. In particular, the results extend the applicability of ILC in robot motion control and provide a means for improving the overall trajectory tracking performance of most robotic systems.  相似文献   

20.
The security control problem for a class of unknown nonlinear systems is considered in this paper. For the nonlinear system running in the network environment, the measurement channel is subjected to hybrid attacks. Intermittent denial of service attacks and false data injection attacks are modeled as the hybrid attacks. According to the characteristics of the repetitive system, a resilient iterative learning control (ILC) algorithm under hybrid attacks is devised. Subsequently, the stability of the system is proved by mathematical derivation and theoretical analysis in the sense of mathematical expectation. The theoretical analysis results indicate that the resilient ILC algorithm can ensure the stability of the system, and the tracking error converges with the increased number of iterations. Finally, the validity of the algorithm is illustrated by numerical simulation and mobile robot simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号