首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro-milling is a promising approach to repair the micro-defects on the surface of KH2PO4 (KDP) crystal. The geometrical parameters of micro ball end mill will greatly influence the repairing process as a result of the soft brittle properties of KDP crystal. Two types of double-edged micro ball end mills were designed and a three-dimensional finite element (FE) model was established to simulate the micro milling process of KDP crystal, which was validated by the milling experiments. The rake angle of −45°, the relief angle of 45° and the cutting edge radius of 1.5–2 μm were suggested to be the optimal geometrical parameters, whereas the rake angle of −25° and the relief angle of 9° were optimal just for micro ball end mill of Type I, the configuration with the rake angles ranging from 0° to 35°, by fully considering the cutting force, and the stress–strain distribution over the entire tool and the cutting zone in the simulation. Moreover, the micro polycrystalline diamond (PCD) ball end mills adopting the obtained optimal parameters were fabricated by wire electro-discharge machining (WEDM) and grinding techniques, with the average surface roughness Ra of tool rake face and tool flank face ∼0.10 μm, and the cutting edge radius of the tool ∼1.6 μm. The influence of tool's geometrical parameters on the finished surface quality was verified by the cutting experiments, and the tool with symmetric structure was found to have a better cutting performance. The repairing outlines with Ra of 31.3 nm were processed by the self-fabricated tool, which could successfully hold the growth of unstable damage sites on KDP crystal.  相似文献   

2.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

3.
We have investigated the cutting forces, the tool wear and the surface finish obtained in high speed diamond turning and milling of OFHC copper, brass CuZn39Pb3, aluminum AlMg5, and electroless nickel. In face turning experiments with constant material removal rate the cutting forces were recorded as a function of cutting speed between vc = 150 m/min and 4500 m/min revealing a transition to adiabatic shearing which is supported by FEM simulations of the cutting process. Fly-cutting experiments carried out at low (vc = 380 m/min) and at high cutting speed (vc = 3800 m/min) showed that the rate of abrasive wear of the cutting edge is significantly higher at ordinary cutting speed than at high cutting speed in contrast to the experience made in conventional machining. Furthermore, it was found that the rate of chemically induced tool wear in diamond milling of steel is decreasing with decreasing tool engagement time per revolution. High speed diamond machining may also yield an improved surface roughness which was confirmed by comparing the step heights at grain boundaries obtained in diamond milling of OFHC copper and brass CuZn39Pb3 at low (vc = 100 m/min) and high cutting speed (vc = 2000 m/min). Thus, high speed diamond machining offers several advantages, let alone a major reduction of machining time.  相似文献   

4.
AlCrOxN1−x coatings were arc deposited onto HSS drills and WC–Co end mills at N2/O2 ratios of 0.9–0.75 using DC or 10 kHz pulse bias. Lower O2 content coatings had a hardness of 32.5 GPa. whereas 0.25 O2 ratio coatings were 24–25 GPa. AlCrOxN1−x coated 6.35 mm Dia. HSS jobber drills were tested by drilling 2.5D holes in AISI D2. 10 kHz 0.9 N2 0.1 O2 coatings drilled a mean of 17.6 holes/µm, similar to commercial AlCrN coated drills at 17.8 holes/µm, whereas DC 0.75 N2 0.25 O2 coatings drilled 9 holes/µm. AlCrOxN1−x coated WC–Co end mills had low steady state wear in milling AISI 316L (70 m/min, MQL) and cut >24 m whereas uncoated tools cut 6 m. In contrast to drilling DC 0.75 N2 0.25 O2 tools had the least corner wear and low adhesion on the rake face.  相似文献   

5.
In this study different specimens of ductile cast iron with tensile strength ranking from 400 MPa to 675 MPa were turned with K15 carbide, TiN coated and TiAlN coated tool in order to investigate wear mechanism and performance. Cutting forces and cutting temperature were similar for both coated tools, however flank wear and BUE were the lowest on the TiAlN coated tool, for this reason the TiAlN coated tool is suitable in the machining of ductile cast iron. The proposed tool wear mechanism is based on like-intermittent cutting caused by the pass from hard matrix to the soft graphite occasioning wear by adhesion. The analysis of the flank wear on coated tools is proposed by means of the wear curves in logarithmic scale instead of the usual linear scale. In this way, the change in wear rate is easily observed. This phenomenon was related with the wear out of the coating layer. The partial loss of the coating layer on cutting edge was confirmed by the EDS mapping images and SEM photographs.  相似文献   

6.
In this work, the dry turning parameters of two different grades of nitrogen alloyed duplex stainless steel are optimized by using Taguchi method. The turning operations were carried out with TiC and TiCN coated carbide cutting tool inserts. The experiments were conducted at three different cutting speeds (80, 100 and 120 m/min) with three different feed rates (0.04, 0.08 and 0.12 mm/rev) and a constant depth of cut (0.5 mm). The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed rate on surface roughness, cutting force and tool wear were analyzed. The results revealed that the feed rate is the more significant parameter influencing the surface roughness and cutting force. The cutting speed was identified as the more significant parameter influencing the tool wear. Tool wear was analyzed using scanning electron microscope image. The confirmation tests are carried out at optimum cutting conditions. The results at optimum cutting condition are predicted using estimated signal to noise ratio equation. The predicted results are found to be closer to experimental results within 8% deviations.  相似文献   

7.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

8.
Cutting of a nanoscale workpiece is useful in nano testing and fabrication, and novel cutting methods with little gasification of cut nano samples and simple device structures are needed for practical applications. In this paper, an ultrasonic nanowire cutting strategy is demonstrated, in which the linear and elliptical vibration of the tip of a micro cutting tool and the adhesion force between a substrate and nanowire are employed to cut and fix the nanowire, respectively. With this strategy, cutting of individual silver nanowires with a diameter from 50 nm to 400 nm is implemented, in which the vibration velocity amplitude of the micro cutting tool’s root is from 18 to 220 mm/s, and the working frequency is about 96.9 kHz and 45.2 kHz, respectively. The dependency of the minimum cutting velocity and optimum cutting velocity range’s lower limit on the AgNW diameter is experimentally clarified. Also, the cutting principle is analyzed, which can well explain the incision morphology and cutting characteristics.  相似文献   

9.
This paper presents experimental results concerning the machinability of the titanium alloy Ti17 with and without high-pressure water jet assistance (HPWJA) using uncoated WC/Co tools. For this purpose, the influence of the cutting speed and the water jet pressure on the evolution of tool wear and cutting forces have been investigated. The cutting speed has been varied between 50 m/min and 100 m/min and the water jet pressure has been varied from 50 bar to 250 bar. The optimum water jet pressure has been determined, leading to an increase in tool life of approximately 9 times. Compared to conventional lubrication, an increase of about 30% in productivity can be obtained.  相似文献   

10.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

11.
Y.S. Mao  L. Wang  K.M. Chen  S.Q. Wang  X.H. Cui 《Wear》2013,297(1-2):1032-1039
Dry sliding wear tests were performed for Ti–6Al–4V alloy under a load of 50–250 N at 25–500 °C on a pin-on-disk elevated temperature tester. Worn surfaces and subsurfaces were thoroughly investigated for the morphology, composition and structure of tribo-layers. Ti–6Al–4V alloy could not be considered to possess poor wear resistance at all times, and presented a substantially higher wear resistance at 400–500 °C than at 25–200 °C. The tribo-layer, a mechanical mixing layer, was noticed to exist on worn surfaces under various conditions. High wear rate at 25–200 °C was ascribed to no protective tribo-layer containing no or trace tribo-oxides. As more oxides appeared in the tribo-layers, they presented an obviously protective role due to their high hardness, thus giving a reasonable explanation for high wear resistance of Ti–6Al–4V alloy at 400–500 °C.  相似文献   

12.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

13.
《Tribology International》2012,45(12):1902-1919
Wear variations of Nimonic 80A slid against Incoloy 800HT between room temperature (RT) and 750 °C, and sliding speeds of 0.314 and 0.905 m s−1 were investigated using a ‘reciprocating-block-on-cylinder’, low debris retention configuration. These were considered alongside previous observations at 0.654 m s−1.Different wear types occurring were mapped, including high transfer ‘severe wear’ (RT and 270 °C, also 0.905 m s−1 at ≤570°C), low transfer ‘severe wear’ (0.314 m s−1 at 390 °C to 510 °C oxide abrasion assisted at 510 °C), and ‘mild wear’ (0.314 m s−1 at ≥570 °C; 0.905 m s−1 at ≥630 °C). Wear surfaces at 750 °C were cross-sectioned and profiled.  相似文献   

14.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

15.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

16.
In this paper, the Taguchi method and regression analysis have been applied to evaluate the machinability of Hadfield steel with PVD TiAlN- and CVD TiCN/Al2O3-coated carbide inserts under dry milling conditions. Several experiments were conducted using the L18 (2 × 3 × 3) full-factorial design with a mixed orthogonal array on a CNC vertical machining center. Analysis of variance (ANOVA) was used to determine the effects of the machining parameters on surface roughness and flank wear. The cutting tool, cutting speed and feed rate were selected as machining parameters. The analysis results revealed that the feed rate was the dominant factor affecting surface roughness and cutting speed was the dominant factor affecting flank wear. Linear and quadratic regression analyses were applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for minimum surface roughness and flank wear in the milling the Hadfield steel.  相似文献   

17.
Cu films were deposited on Si substrates by direct current (DC) magnetron sputtering at three different substrate temperatures such as room temperature (RT), 100 °C and 200 °C. Possible mechanisms for substrate temperature dependent microstructure evolution in Cu films are discussed in this paper. Enhanced mechanical properties such as high hardness, high elastic modulus, low friction coefficient and high wear resistance of the films were obtained at deposition temperature of 100 °C. However, high friction coefficient as well as high wear rate was measured in films deposited at room temperature and 200 °C.  相似文献   

18.
This paper describes the notch and flank wear specific to a SiC whisker reinforced alumina tool in air jet assisted (AJA) turning of nickel-base superalloy Inconel 718 at high cutting speeds. An AJA machining experiment has revealed that the air jet applied to the tool tip in addition to coolant dramatically reduces the depth-of-cut notch wear. As a result, the width of flank wear, but not the size of notch wear, determined the life of a ceramic tool in AJA machining of Inconel 718. This is a reason for the large extension and small variation of the tool life when high speed AJA machining is adopted. The maximum tool life length reached 2160 m at a cutting speed of 660 m/min under the given cutting conditions. Finally, the mechanisms of the notch and flank wear of a SiC whisker reinforced alumina tool in AJA machining are discussed from the viewpoints of tribochemical reactions and tool wear anisotropy.  相似文献   

19.
K. Katuku  A. Koursaris  I. Sigalas 《Wear》2010,268(1-2):294-301
Experimental studies of dry finish turning of ASTM Grade 2 austempered ductile iron with PcBN cutting tools were carried out at cutting speeds ranging from 50 to 800 m/min, at a feed of 0.05 mm/rev and depth cut of 0.2 mm. The wear mechanisms of PcBN cutting tools were investigated through the examination of the wear surfaces by means of optical, scanning electron and transmission electron microscopes as well as energy dispersive spectroscopy. Flank wear and crater wear were the main wear modes within this range of cutting speeds. Adhesion and adhesion induced abrasion were the main wear mechanisms at cutting speeds less than 150 m/min. Abrasion and wear by thermally activated-diffusion and oxidation-chemical reaction wear were the main wear mechanisms at cutting speeds greater than 150 m/min. A high concentration of Mg, Si, and O on the wear surfaces and a heat-affected zone in the tools suggested that at speeds in excess of 150 m/min, the rate controlling wear mechanism involved chemical reaction between the tools and the operating environment.  相似文献   

20.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号