首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
研究了820℃,变形10%、30%、50%、70%下TC17钛合金的组织和拉伸性能。结果表明:两相区不同变形量主要影响片状α相的球化过程,球化分数随变形量的增加而增加。TC17钛合金的室温拉伸性能表现优异,而且呈现出与片状α相球化相同的规律,拉伸强度和塑性都随两相区变形量的增加而逐渐升高。拉伸强度和塑性与变形程度之间呈线性关系。断裂方式为韧性断裂,大变形量下裂纹起源于内部,断口表面更加粗糙,韧窝更深更大,断裂过程中需要消耗更多的能量,从而提高拉伸性能。  相似文献   

2.
本文采用不同热处理温度(760℃、800℃、840℃和880℃)和不同保温时间(10 min、30 min、60min和120 min)研究了热压缩后的Ti-5322钛合金片状组织的静态球化行为。结果表明:α相晶粒尺寸主要取决于热处理温度和保温时间,而与变形量、变形温度和应变速率关系不大。随着热处理温度升高和保温时间的延长,α相晶粒尺寸增大而α相的含量降低。静态球化分数随变形量、热处理温度和热处理时间的增加而增加,但对变形温度和应变速率的依赖性较小。另外,随着变形量、热处理温度和热处理时间的增加,静态球化分数的增速先增大后减小。Ti-5322钛合金组织粗化贯穿整个热处理过程,静态球化过程可以分为低温短时退火阶段和高温长时退火阶段;在前一个阶段,静态球化主要以边界分离的形式进行,而在后一个阶段,边界分离机理几乎消失,静态球化主要以末端迁移和奥斯瓦尔德熟化的形式进行。  相似文献   

3.
研究了具有片层α组织TC21钛合金在β和α+β相区热轧制后的组织演变规律及其片层组织的球化机制。结果表明:变形温度及应变对具有片层α组织的TC21钛合金断裂及球化具有显著影响。当变形温度为990℃时,在β相区发生变形;当应变不小于0.51时,平行轧向和晶界附近的片层α组织首先发生断裂、球化,晶内片层α组织被压弯变形;当在接近相变点(即950℃)变形,应变达到0.92时,片层α组织发生球化;当在两相区较低温度,即910℃和870℃变形时,片层α取向杂乱,且被压弯成手风琴状,未发现球化。TEM观察分析发现,具有α片层组织的TC21钛合金球化过程是一个复杂过程,首先,通过动态回复或是晶界滑移使得α片层中形成α/α界面;然后,β相通过亚晶界楔入α片层,α片层解体;最后,通过物质末端迁移,发生球化。  相似文献   

4.
为探究TC8M-1钛合金的热加工特性与热处理特性,选择910℃时、5%,15%,30%,50%和70%形变量锻造锻坯,观测锻坯显微组织。并分别与890及930℃时、40%变形量的锻坯显微组织进行对比。另外,还进行了热处理工艺试验探索。结果表明:TC8M-1钛合金塑性优良,锻造温度区间较宽。910℃温度下一火次变形量可达70%,但变形量超过50%后将出现细晶区域。40%变形量、930℃温度下的组织初生α相出现球化;40%变形量、890℃温度下的组织初生α相保留塑性变形痕迹。为兼顾室温拉伸强度与450℃高温的持久强度,TC8M-1钛合金适宜的热处理制度为:930℃/2 h+空冷;590℃/1 h+空冷。  相似文献   

5.
对TC17合金在820和860℃下进行等温锻造,随后在相同温度下进行热处理10 min~8 h,利用定量金相法研究变形量、热处理温度等工艺参数对片状α相静态球化的影响规律。结果表明:随着变形量的增加,在随后热处理过程中片状α相更容易发生晶界分离而形成球化组织,球化速率明显提高。温度影响扩散过程,对静态球化有促进作用,且在应变较低时影响更为明显。在球化率随热处理时间增大的同时,球化速率逐渐减小至常值,JMAK方程可以用来描述TC17合金静态球化的规律。  相似文献   

6.
TC21钛合金在不同条件下超塑拉伸变形后,进行双重退火热处理,研究热加工工艺对TC21合金显微组织演变的影响.结果表明,当变形温度在890~960℃时,TC21合金的伸长率随变形温度的增加先增加后减少,最佳超塑性变形温度为910℃;TC21合金在α+β相区超塑变形,然后在α+β相区双重退火处理后得到双态组织;在准β区进行超塑变形、α+β相区双重退火处理后得到网篮组织.  相似文献   

7.
研究了α+β两相区变形时不同应变量下,TC21合金的微观组织演变过程及拉伸性能变化规律.结果表明,应变量对初生α相的形态有显著影响;随应变量的增大,初生α相的形态由短棒状逐渐转变为等轴状;初生α相含量逐渐减少;初生α相等轴化程度越高、含量越多将有利于提高合金的强度;球化及针状的次生α相对提高合金强度有利,而片层状次生α相则使合金强度降低;确定了合金初生α相球化程度最好和含量最高的应变量在6.0附近.  相似文献   

8.
本文采用等应变速率高温拉伸变形试验,研究了TC4钛合金在不同形变温度下微观组织和性能的演变行为,着重探讨了形变对钛合金组织演化、相变的影响作用及其随温度的变化规律。结果表明,α+β两相区变形,随形变温度升高,峰值应力及所需应变降低。形变对微观组织演化的影响作用随形变温度变化而改变:两相区中低温段(900℃以下),形变促进初生α相再结晶,细化初生α相尺寸;两相区高温段(900℃以上),形变促进次生α相球化,其作用随温度升高先增强后减弱。形变影响β→α相变进程,提高次生α相形核率,尤以两相区中低温段变形更为显著,从而使得片层状次生α相数量增加、间距明显细化。随形变温度升高,组织中α相总量先下降后上升,导致硬度先降低后升高,耐蚀性先升高后下降。其中900℃变形时,TC4钛合金α相总量最少(约57%),硬度略有降低而耐蚀性达到最优。  相似文献   

9.
利用热模拟试验机对片状TA15钛合金进行等温恒应变速率压缩试验,研究了应变速率为10-3~1 s-1、真应变为0.22~0.92、变形温度为900 ℃和950 ℃时片状组织的动态球化行为.结果表明,真应变对动态球化有较大影响,真应变从0.22增加到0.92时,α相的球化率最大增幅为40%;900 ℃和950 ℃变形时α相的球化率差别不大;当应变速率为10-3~10-1 s-1时,降低应变速率能够显著提高片状α相的球化率,但当应变速率大于10-1 s-1后,球化率随应变速率的变化并不明显.TA15钛合金的真应力-真应变曲线均呈"应变软化"型,这种软化行为主要是由片状α相的动态球化和弯折引起的.  相似文献   

10.
为了揭示变形程度和变形温度对β预制坯针状组织的影响规律,在800、820、840和860 ℃这4个不同温度以及20%、40%、60%和80%这4个不同应变量进行小饼等温压缩试验.研究结果表明:变形程度是影响TC17钛合金球化的主要因素.在变形量为40%~60%时,片状α组织受到剪切作用并发生动态再结晶;当变形量大于60%时,组织发生有效球化.在800~860 ℃温度范围内,变形温度越高,越有利于组织球化.  相似文献   

11.
应用热加工图研究TC17合金片状组织球化规律   总被引:16,自引:1,他引:16  
采用加工图理论分析了TC17(Ti-5Al-4Mo-4Cr-2Sn-2Zr)钛合金在高温变形过程中的片状α球化规律。结果表明:用加工图理论分析材料的高温变形行为能准确直观地反映出材料在不同变形条件下的组织演变规律。分析加工图发现:TC17合金在840℃~870℃,应变速率0.5s^-1~3s^-1之间变形是片状α组织球化的理想区域,此时对应的能量耗散效率值为45%左右;在850℃~910℃,较高应变速率(〉5s^-1)下对TC17合金加工易发生流变不稳定现象,形成绝热剪切带。  相似文献   

12.
基于机理型微观组织模型与梯度算法建立钛合金中α片层球化分数敏感性分析函数,将该函数应用于TC17合金中片层组织球化分数的敏感性分析。基于扫描电镜观测结果定量分析TC17合金等温压缩过程中工艺参数对球化分数的影响规律,并采用遗传算法优化其敏感性分析函数的材料参数。结果表明:当变形温度为1083 K、应变速率为0.01 s~(-1)、应变为1.2时,TC17合金片层α组织几乎完全转变为等轴α晶粒;随着应变速率的增加,片层α球化分数减少,这主要因为较低的应变速率为动态球化提供了足够的时间;而变形温度对片层α球化分数的影响受应变速率控制。此外,TC17合金片层α球化分数关于应变、变形温度和对数应变速率微分的预测结果与试验结果相吻合。  相似文献   

13.
在β单相区对钛合金锻件进行了等温锻造和热处理,研究了等温锻造温度、变形程度和热处理工艺对钛合金锻件显微组织和力学性能的影响,并探讨了工艺参数的作用机理。结果表明:随着等温锻造温度的提高,初生α相的宽度有所增加,次生α相宽度有所减小,而β转变组织的含量有较大幅度降低;随着变形程度的增加,钛合金锻件的原始β晶粒大小、晶界α相宽度、粗片状α相宽度和面积分数逐渐增加,而晶内细片状α相宽度逐渐减小;940℃×1 h水冷+550℃×5 h空冷的试样中粗片状α相宽度、β转变组织中二次α相宽度最小,而β转变组织面积分数最大;等温锻造温度为995℃、变形程度为75%、940℃×1 h水冷+550℃×5 h空冷热处理的钛合金锻件可以取得较好的强度与塑性结合。  相似文献   

14.
研究了准β锻造工艺对TC18钛合金显微组织和性能的影响。结果表明:在α+β两相区较小变形时,其显微组织和仅在β单相区变形时组织形貌相近,为典型的网篮组织;在α+β两相区较大变形时,晶界破碎程度增大,片状α相向等轴状α相转变;随两相区变形量由0~50%变化时,其抗拉强度先升高再降低,在变形量为20%~30%时抗拉强度较高,塑性则呈小幅上升趋势。TC18钛合金跨相区锻造时,为获得编织均匀的网篮组织,且又保证原始β晶界充分破碎,从而获得较优的强度、塑性和冲击韧性的匹配,在β单相区即Tβ+20℃温度下的热加工变形中变形量应大于35%,而在α+β两相区即Tβ-30℃温度下的热加工变形中变形量应控制在30%以内。  相似文献   

15.
通过对Φ100 mm×150 mm TC17钛合金棒材进行镦粗试验,研究了β锻造工艺对其微观组织形貌的影响。结果表明:变形量和变形速率对TC17钛合金显微组织有显著的影响。当变形速率为0.1 mm/s时,晶界α相容易被破碎,变形量越大,破碎越严重,且越容易球化,80%变形量时α相的球化率达到80%。当变形速率为2 mm/s时,β晶粒容易发生动态再结晶,变形量越大,再结晶体积分数越高,80%变形量时β相的再结晶体积分数为50%。晶界α相发生球化对变形量和变形速率均较为苛刻,仅在变形量为80%、变形速率为0.1 mm/s时大量晶界α相发生了球化。此外,相比变形量,β再结晶数量对变形速率更加敏感。  相似文献   

16.
补焊质量直接关系ZTA15钛合金铸件的力学性能及其使用寿命,以TC4焊丝为填充材料对ZTA15钛合金铸棒开展TIG焊接工艺试验,并对焊接接头的组织及室温拉伸性能、400℃拉伸性能和室温冲击韧性进行了分析。结果表明,TIG焊接接头质量良好,未发现任何气孔、裂纹、未熔合等缺陷;焊缝及热影响区组织均由针状马氏体α’相+片状α相+β基体组成。焊接接头室温、400℃的抗拉强度和屈服强度均高于ZTA15铸棒,断后延伸率分别达到母材的41.8%和37.2%,而室温冲击韧性达到母材的95.5%。室温、400℃拉伸试样的断裂位置为母材区,断裂机制均为准解理断裂。  相似文献   

17.
对TC21钛合金进行三重热处理试验,研究了热处理温度和冷却速率对TC21钛合金网篮组织及拉伸性能的影响。结果表明,TC21合金在β单相区高温(990℃)固溶后,再经历两相区低温(870~910℃)固溶和低温(590℃)时效后,合金的显微组织呈现典型的网篮组织。随着第二重热处理温度的升高,片状α相含量和长度显著减小,厚度增加,合金的强度增加,塑性下降。经不同的冷却速率处理后,水冷和空冷试样的显微组织均由α相、β相和马氏体αy组成,而炉冷试样仅由α相和β相组成。三者的拉伸性能相比较,水冷和空冷试样表现为强度较好,塑性较差;炉冷试样表现为塑性较好,强度较差。TC21合金较好的三重热处理工艺为:990℃/1 h, AC+870℃/1 h, AC+590℃/4 h, AC。  相似文献   

18.
研究了TC25G钛合金两相区等温锻造整体叶盘的组织分布和力学性能。结果表明:锻件能顺利成形,应变分布基本均匀,没有缺陷产生。整体叶盘各部位组织均匀,呈现等轴α与片状α的双态组织形貌,初生等轴α含量约为10%,片状α相均匀地分布在β转变基体上,受两相区变形影响,α相晶界不连续,呈弯折、断裂状,可观察到部分再结晶β晶粒。TC25G钛合金整体叶盘力学性能优异,盘件各部位力学性能均满足要求,而且拉伸性能、断裂韧性、高周疲劳性能均具有较大的富余量。  相似文献   

19.
在Gleeble-1500热模拟试验机上通过热压缩试验研究具有初始片层组织的TC17钛合金在变形温度为780~860 ℃、应变速率为0.001~10 s-1、变形量为15%~75%范围内的组织演变,定量分析热变形参数对片层组织动态球化过程的影响.采用结合贝叶斯归一化算法的BP人工神经网络,建立TC17钛合金片层组织动态球化演变的预测模型,误差分析表明模型精度较好.  相似文献   

20.
为了改善了TC17钛合金热加工性能,对TC17钛合金进行了置氢处理,通过金相观察和X射线衍射分析,研究了置氢后TC17钛合金的微观组织及相转变规律,在变形温度800~860℃、应变速率0.001~0.1 s-1的条件下,对置氢TC17钛合金进行了高温压缩试验,研究了置氢TC17钛合金的热变形行为,并对其热变形激活能进行了计算分析。结果显示,TC17钛合金原始组织为典型的网篮组织,由α+β相组成,随着氢含量的增加,针状α相数量减少,β相增多,当氢含量超过0.40%(质量分数)时,钛合金中依次出现了γ氢化物和δ氢化物。置氢TC17钛合金不仅是温度敏感型材料、速率敏感型材料,也是氢含量敏感型材料,在氢含量0.2%时,峰值应力达到最小值,与原始合金相比,变形温度可降低40℃,应变速率可提高1个数量级。同时,氢含量0.2%的TC17钛合金变形激活能也达到最小值162 kJ/mol,其热变形软化机制为动态回复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号