首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.  相似文献   

2.
Enzyme-catalysed site-specific protein modifications enable the precision manufacture of conjugates for the study of protein function and/or for therapeutic or diagnostic applications. Asparaginyl ligases are a class of highly efficient transpeptidases with the capacity to modify proteins bearing only a tripeptide recognition motif. Herein, we review the types of protein modification that are accessible using these enzymes, including N- and C-terminal protein labelling, head-to-tail cyclisation, and protein-protein conjugation. We describe the progress that has been made to engineer highly efficient ligases as well as efforts to chemically manipulate the enzyme reaction to favour product formation. These enzymes are powerful additions to the protein engineer‘s toolbox.  相似文献   

3.
4.
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.  相似文献   

5.
This review outlines recent developments in protein engineering of stereo- and regioselective enzymes, which are of prime interest in organic and pharmaceutical chemistry as well as biotechnology. The widespread application of enzymes was hampered for decades due to limited enantio-, diastereo- and regioselectivity, which was the reason why most organic chemists were not interested in biocatalysis. This attitude began to change with the advent of semi-rational directed evolution methods based on focused saturation mutagenesis at sites lining the binding pocket. Screening constitutes the labor-intensive step (bottleneck), which is the reason why various research groups are continuing to develop techniques for the generation of small and smart mutant libraries. Rational enzyme design, traditionally an alternative to directed evolution, provides small collections of mutants which require minimal screening. This approach first focused on thermostabilization, and did not enter the field of stereoselectivity until later. Computational guides such as the Rosetta algorithms, HotSpot Wizard metric, and machine learning (ML) contribute significantly to decision making. The newest advancements show that semi-rational directed evolution such as CAST/ISM and rational enzyme design no longer develop on separate tracks, instead, they have started to merge. Indeed, researchers utilizing the two approaches have learned from each other. Today, the toolbox of organic chemists includes enzymes, primarily because the possibility of controlling stereoselectivity by protein engineering has ensured reliability when facing synthetic challenges. This review was also written with the hope that undergraduate and graduate education will include enzymes more so than in the past.  相似文献   

6.
Enzyme engineering has made impressive progress in the past decades, paving the way for the widespread use of enzymes for various purposes. In contrast to “classical” enzyme engineering, which focuses on optimizing specific properties of natural enzymes, a more recent trend towards the creation of artificial enzymes that catalyze fundamentally distinct, new-to-nature reactions is observable. While approaches for creating such enzymes differ significantly, they share the common goal of enabling biocatalytic novelty to broaden the range of applications for enzymes. Although most artificial enzymes reported to date are only moderately active and barely function in vivo, they have the potential to endow cells with capabilities that were previously out of reach and thus herald a new wave of “functional xenobiology”. Herein, we highlight recent developments in the field of artificial enzymes with a particular focus on challenges and opportunities for their use in xenobiology.  相似文献   

7.
Artificial metalloenzymes have emerged as a promising new approach to asymmetric catalysis. In our group, we are exploring novel artificial metalloenzyme designs involving creation of a new active site in a protein or DNA scaffold that does not have an existing binding pocket. In this review, we give an overview of the developments in the two approaches to artificial metalloenzymes for asymmetric catalysis investigated in our group: creation of a novel active site on a peptide or protein dimer interface and using DNA as a scaffold for artificial metalloenzymes.  相似文献   

8.
Construction of artificial metalloenzymes based on protein assemblies is a promising strategy for the development of new catalysts, because the three-dimensional nanostructures of proteins with defined individual sizes can be used as molecular platforms that allow the arrangement of catalytic active centers on their surfaces. Protein needles/tubes/fibers are suitable for supporting various functional molecules, including metal complexes, synthetic molecules, metal nanoparticles, and enzymes with high densities and precise locations. Compared with bulk systems, the protein tube- and fiber-based materials have higher activities for catalytic reactions and electron transfer, as well as enhanced functions when used in electronic devices. The natural and synthetic protein tubes and fibers are constructed by self-assembly of monomer proteins or peptides. For more precise designs of arrangements of metal complexes, we have developed a new conceptual framework, based on the isolation of a robust needle structure from the cell-puncturing domains of a bacteriophage. The artificial protein needle shows great promise for use in creating efficient catalytic systems by providing the means to arrange the locations of various metal complexes on the protein surface. In this account, we discuss the recent development of protein needle-based metalloenzymes, and the future developments we are anticipating in this field.  相似文献   

9.
We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII, ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII-bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII-coupled enzyme was shown to mimic natural Zn hydrolase activity.  相似文献   

10.
Clr4 is a histone H3 lysine 9 methyltransferase in Schizosaccharomyces pombe that is essential for heterochromatin formation. Previous biochemical and structural studies have shown that Clr4 is in an autoinhibited state in which an autoregulatory loop (ARL) blocks the active site. Automethylation of lysine residues in the ARL relieves autoinhibition. To investigate the mechanism of Clr4 regulation by autoinhibition and automethylation, we exchanged residues in the ARL by site-directed mutagenesis leading to stimulation or inhibition of automethylation and corresponding changes in Clr4 catalytic activity. Furthermore, we demonstrate that Clr4 prefers monomethylated (H3K9me1) over unmodified (H3K9me0) histone peptide substrates, similar to related human enzymes and, accordingly, H3K9me1 is more efficient in overcoming autoinhibition. Due to enzyme activation by automethylation, we observed a sigmoidal dependence of Clr4 activity on the AdoMet concentration, with stimulation at high AdoMet levels. In contrast, an automethylation-deficient mutant showed a hyperbolic Michaelis–Menten type relationship. These data suggest that automethylation of the ARL could act as a sensor for AdoMet levels in cells and regulate the generation and maintenance of heterochromatin accordingly. This process could connect epigenome modifications with the metabolic state of cells. As other human protein lysine methyltransferases (for example, PRC2) also use automethylation/autoinhibition mechanisms, our results may provide a model to describe their regulation as well.  相似文献   

11.
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.  相似文献   

12.
Virus-like particles (VLPs) provide unique scaffolds for the construction of coupled catalytic systems by attachment and encapsulation of catalysts within their hollow interiors. The interior of VLPs provides an environment where catalysts of biological or synthetic origins can be confined, protected, and colocalized in close proximity with catalysts of different types. Herein, we utilize the P22VLP as a scaffold to construct a synthetic hybrid catalyst by attachment of a small organometallic catalyst to the interior colocalized with an encapsulated enzyme. This produces a complex and active coupled biomimetic catalyst system. By combining both enzymatic and synthetic catalysts together, new biological synthetic hybrid materials can be produced that incorporate the best of both catalytic systems.  相似文献   

13.
The cover picture shows a ligand‐targeted proteinase enzyme or “catalytic antagonist” acting as a molecular angler fish: By precisely positioning different binding ligands (L) around the active site “mouth” of a degradative proteinase enzyme, target proteins (TP) can be plucked from solution, locked in position adjacent to the catalytic triad “jaws”, and in this way readily and specifically degraded. The hunting strategy of the deep sea angler fish, which uses a lure above its mouth, illustrates this principle. Further details can be found in the article by B. Davis, R. R. Bott, J. B. Jones et. al. on pp. 533–537.  相似文献   

14.
A pair of 9-mesityl-10-phenyl acridinium (Mes−Acr+) photoredox catalysts were synthesized with an iodoacetamide handle for cysteine bioconjugation. Covalently tethering of the synthetic Mes−Acr+ cofactors with a small panel of thermostable protein scaffolds resulted in 12 new artificial enzymes. The unique chemical and structural environment of the protein hosts had a measurable effect on the photophysical properties and photocatalytic activity of the cofactors. The constructed Mes−Acr+ hybrid enzymes were found to be active photoinduced electron-transfer catalysts, controllably oxidizing a variety of aryl sulfides when irradiated with visible light, and possessed activities that correlated with the photophysical characterization data. Their catalytic performance was found to depend on multiple factors including the Mes−Acr+ cofactor, the protein scaffold, the location of cofactor immobilization, and the substrate. This work provides a framework toward adapting synthetic photoredox catalysts into artificial cofactors and includes important considerations for future bioengineering efforts.  相似文献   

15.
Methods for activating signaling enzymes hold significant potential for the study of cellular signal transduction. Here we present a strategy for engineering chemically activatable protein tyrosine phosphatases (actPTPs). To generate actPTP1B, we introduced three cysteine point mutations in the enzyme's WPD loop. Biarsenical compounds were screened for the capability to bind actPTP1B's WPD loop and increase its phosphatase activity. We identified AsCy3‐EDT2 as a robust activator that selectively targets actPTP1B in proteomic mixtures and intact cells. Introduction of the corresponding mutations in T‐cell PTP also generates an enzyme (actTCPTP) that is strongly activated by AsCy3‐EDT2. Given the conservation of WPD‐loop structure among the classical PTPs, our results potentially provide the groundwork of a widely generalizable approach for generating actPTPs as tools for elucidating PTP signaling roles as well as connections between dysregulated PTP activity and human disease.  相似文献   

16.
Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies.  相似文献   

17.
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.  相似文献   

18.
Catalytically active non-metal cofactors in enzymes carry out a variety of different reactions. The efforts to develop derivatives of naturally occurring cofactors such as flavins or pyridoxal phosphate and the advances to design new, non-natural cofactors are reviewed here. We report the status quo for enzymes harboring organocatalysts as derivatives of natural cofactors or as artificial ones and their application in the asymmetric synthesis of various compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号