首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This study presents experimental two-phase frictional data for R410A-oil mixture flow boiling in an internal spiral grooved microfin tube with outside diameter of 5 mm. Experimental parameters include the evaporation temperature of 5 °C, the mass flux from 200 to 400 kg m?2 s?1, the heat flux from 7.46 to 14.92 kW m?2, the inlet vapor quality from 0.1 to 0.8, and nominal oil concentration from 0 to 5%. The test results show that the frictional pressure drop of R410A initially increases with vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.7 and 0.8; the frictional pressure drop of R410A–oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. The enhanced factor is always larger than unity and increases with nominal oil concentration at a given vapor quality. The range of the enhanced factor is about 1.0–2.2 at present test conditions. A new correlation to predict the local frictional pressure drop of R410A-oil mixture flow boiling inside the internal spiral grooved microfin tube is developed based on local properties of refrigerant–oil mixture, and the measured local frictional pressure drop is well correlated with the empirical equation proposed by the authors.  相似文献   

2.
This paper presents an experimental investigation of the ester oil ISO VG10/refrigerant R134a mixture flashing flow in a 6.0 m long, 3.22 mm ID tube, which is one of the primary steps towards the construction of a methodology for the study of the lubrication and gas leakage in refrigeration compressors. The phase change starts with solubility reduction of the refrigerant in the oil as the pressure decreases due to the friction forces. In this flashing flow the foam pattern is observed at the end of the tube as vapor quality reaches high values, and this is a particular phenomenon of this kind of mixture flow. In order to study this pressure drop, an experimental apparatus was designed to allow the measurement of both pressure and temperature profiles along the tube as well as the visualization of the flow patterns. Pressure and temperature distribution along the flow were measured for saturation pressure ranging from 450 to 650 kPa, mass flux ranging from about 2000 to 3000 kg/(m2s), temperatures around 303 K, and inlet refrigerant concentration varying between 0.2 and 0.4 kg ref/kg mixt. An available correlation proposed to predict the frictional pressure drop for a mixture composed by the mineral oil SUNISO 1GS and refrigerant R12 flowing in small diameter tubes yielded large deviations in predicting the ester oil and refrigerant R134a mixture flow. A new correlation has been proposed that fitted the experimental data with rms deviations of 24%.  相似文献   

3.
This study investigated whether a novel ionogenic substance, containing amongst others zinc and rubidium (PHI-5; Dermagenics Inc, Memphis, TN, USA), could improve the healing of full-thickness skin wounds. Uniform wounds were created on the right flank of guinea pigs. Micro-grooved silicone rubber membranes, containing 0 (controls), 1.25, 5.00, or 10.00 μg PHI-5, were sutured onto this wound. Standardized digital wound photographs were made after 1, 3, and 6 weeks. Also, wound biopsies were taken after 3 and 6 weeks for histological and histomorphometrical evaluation. For all study groups, 6 animals were used. Analysis of the 1-week digital photographs showed that the surface area of the wounds decreased significantly, with an increasing PHI-5 concentration. No other differences were found in the wound photographs. Also, no differences were measured in histomorphometry at 3 and 6 weeks. Concluding, in our study model a single application of PHI-5 did have a significant positive influence on initial wound healing.  相似文献   

4.
Mechanics of Time-Dependent Materials - This paper aims to investigate the influences of variable viscosity and thermal conductivity on peristaltic flow of Carreau–Yasuda nanofluid in a 2D...  相似文献   

5.
This study investigated the liquid state reaction of a Sn–3.0Ag–0.5Cu solder jointed with electroless Ni–P/immersion Au (ENIG) and electroless Ni–P/electroless Pd/immersion Au (ENEPIG) surface finishes. Treatments with various soldering temperatures (240, 250, and 260 °C) and times (60, 180, 300, and 600 s) were performed to study the microstructure evolution. Detailed interfacial images revealed that the morphology of (Cu,Ni)6Sn5 affects the formation of Ni3P and the curvature of the interface between them. In addition, the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni,Pd)6Sn5 were studied and compared. The effect of grain coarsening during extended reflow modified the diffusion transport mechanism. However, because of the refinement of Pd on the grain structure, reduced IMC growth and a lower degree of transition from grain boundary diffusion to volume diffusion could be observed in the growth kinetics of (Cu,Ni,Pd)6Sn5. Moreover, the activation energy of IMC growth was evaluated using the Arrhenius equation. Pd may act as heterogeneous nucleation sites in the initial stage of soldering and lower the activation energy of (Cu,Ni,Pd)6Sn5, compared to (Cu,Ni)6Sn5. The lower activation energy of (Cu,Ni,Pd)6Sn5 growth ensured that no phase transformation occurred in the SAC305/ENEPIG joints, which may benefit the solder joint reliability. Finally, the detailed influence of Pd on the growth kinetics of IMC formation was investigated and discussed.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号