首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct-expansion solar-assisted heat pump (DX-SAHP) system by using R410A as refrigerant is described, which can supply domestic hot water during the whole year. Based on the distributed parameter and homogeneous flow models of collector/evaporator and condenser, the lumped parameter models of compressor and electronic expansion valve, and the refrigerant charge model, a numerical model is developed to estimate the thermal performance of the system. Given the structure parameters, meteorological parameters, initial and final water temperatures, for a fixed superheat degree, the effects of the refrigerant charge quantity on the performance parameters of the system are analyzed, such as compressor power, heat gain of collector, heating time, collector efficiency and system COP. Furthermore, for a fixed refrigerant charge quantity, the effects of various parameters, including solar radiation, ambient temperature, compressor speed and initial water temperature, have been simulated and analyzed on the thermal performance of the system.  相似文献   

2.
With many conventional heat pump systems the energy absorbed by auxiliary equipment (fans, defrosters, pumps) can be higher than the power used by the compressor. For example, with a particular air-air heat pump system the annual energy consumption of the compressor and its crankcase heater is 11 240 kWh, whilst 21 501 kWh of energy are consumed by auxiliary fans, the defrost unit, back-up heating and system heat losses. Some savings can be made by monitoring the interior unit fan to correspond to the running time of the compressor or by increasing the size of the heat pump in order to reduce back-up heating, but the latter solution has proved to be costly.Laboratory experiments since 1976 have been to reduce power consumption of auxiliaries, particularly air-air and air-water systems, by using a solar collector as the heat pump evaporator. The collector is made up of flat plates oriented in such a manner as to receive direct solar radiation, with both faces of the plates absorbing energy from the surrounding air by natural convection. The faces of the plates exposed to solar radiation are preferably painted black, but other colours with a low coefficient of reflection (eg brown, brick red, dark green, etc.) can be used if the evaporator-collector is to be architecturally pleasing. Glazing is not necessary, as is usually the case with solar panels. The collector-evaporator plates, and associated piping, are precharged with refrigerant and ready for connection to the heat pump circuit.A heat pump equipped with this collector-evaporator will provide an annual energy saving of 30% as compared to a standard air—water system. Additional benefits are no defrosting cycles, simplified installation, greater operational reliability, and an increased system COP. A table sets out the performance parameters of this system to show the incidence of back-up solar energy during the months of lesser solar radiation, ie outside the months of June to September, eg the COP during daylight hours (a minimum of about 7 h in December, to a minimum of 14 h in May) averages out at 3.89, and 3.27 during nocturnal hours.The article also describes a water heating system (200 and 300 I) using this collector-evaporator, an air-air heat pump with static (no forced ventilation) heat exchangers, and an air-water system using a static evaporator which will provide a 25% energy saving over its conventional counterpart.  相似文献   

3.
风电场、光伏发电站等工程的升压站,一般远离集中热源,冬季多采用“电暖气+热水器”的传统方案,能源利用效率低,增加了电能消耗,降低了项目收益。提出“空气源热泵耦合太阳能及余热”的供暖方案,为升压站提供了可靠的热源,并提高了能源利用效率,降低了运行费用。升压站内电气设备间有大量的40℃左右的排风,可以作为空气源热泵的低温热源,解决了空气源热泵低温时效率低的弊病;空气源热泵生产出热水,并设置太阳能热水器进一步提高水温满足供暖要求;设置单独的蓄热水箱适应供暖负荷变化并解决一部分生活热水需求。以北京某风电场工程为例,阐述了这一系统的优缺点以及推广的必要性和可行性。分析表明,在最冷时该系统仍可以高效、稳定的运行,投资回收期短,为寒冷地区空气源热泵的应用提供了参考依据。  相似文献   

4.
水-水源热泵机组在冬季温度较低的条件下运行一段时间后,会出现制热性能下降并频繁转入保护工况现象。为改善水-水源热泵性能,在负荷匹配的情况下提高其经济性,设想在原热泵系统中增设太阳能辅助集热装置。简要介绍太阳能辅助集热型热泵系统的形式和组成,包括太阳能集热器形式选择、贮热水槽的要求等,同时着重进行冬季供暖工况的热力设计计算。设计计算表明,冬季供热循环时增设太阳能辅助系统之后供热系数有较大提高。在夏季只需将太阳能集热系统与制冷系统分离,即可作生活热水系统使用。  相似文献   

5.
提出一种结构与控制均非常简单的太阳能辅助空气源跨临界CO2热泵空调热水系统,包括太阳能集热系统、CO2热泵系统以及室内室外换热系统;针对不同气候条件,可采用制热、制冷、热水、制热十热水、制冷十热水五种运行模式,实现热水和空调两大功能,具有节能环保的优点。  相似文献   

6.
With many conventional heat pump systems the energy absorbed by auxiliary equipment (fans, defrosters, pumps) can be higher than the power used by the compressor. For example, with a particular air-air heat pump system the annual energy consumption of the compressor and its crankcase heater is 11 240 kWh, whilst 21 501 kWh of energy are consumed by auxiliary fans, the defrost unit, back-up heating and system heat losses. Some savings can be made by monitoring the interior unit fan to correspond to the running time of the compressor or by increasing the size of the heat pump in order to reduce back-up heating, but the latter solution has proved to be costly.Laboratory experiments since 1976 have been to reduce power consumption of auxiliaries, particularly air-air and air-water systems, by using a solar collector as the heat pump evaporator. The collector is made up of flat plates oriented in such a manner as to receive direct solar radiation, with both faces of the plates absorbing energy from the surrounding air by natural convection. The faces of the plates exposed to solar radiation are preferably painted black, but other colours with a low coefficient of reflection (eg brown, brick red, dark green, etc.) can be used if the evaporator-collector is to be architecturally pleasing. Glazing is not necessary, as is usually the case with solar panels. The collector-evaporator plates, and associated piping, are precharged with refrigerant and ready for connection to the heat pump circuit.A heat pump equipped with this collector-evaporator will provide an annual energy saving of 30% as compared to a standard air—water system. Additional benefits are no defrosting cycles, simplified installation, greater operational reliability, and an increased system COP. A table sets out the performance parameters of this system to show the incidence of back-up solar energy during the months of lesser solar radiation, ie outside the months of June to September, eg the COP during daylight hours (a minimum of about 7 h in December, to a minimum of 14 h in May) averages out at 3.89, and 3.27 during nocturnal hours.The article also describes a water heating system (200 and 300 I) using this collector-evaporator, an air-air heat pump with static (no forced ventilation) heat exchangers, and an air-water system using a static evaporator which will provide a 25% energy saving over its conventional counterpart.

Résumé

Dans les pompes à chaleur classiques, l'énergie nécessaire aux auxiliares est souvent supérieure à l'energie dépensée par le compresseur.L'auteur propose quatre possibilités pour remédier à cette situation: pompe de chaleurAnalyse des poster consommateur d'énergie dans une installation avec pompe de challeur traditionelle solaire à capteurs évaporateurs sans vitrage; chauffe-eau par pompe de chaleur assistée solaire; pompe de chaleur assistée échangeurs statiques; pompes de chaleur air extérieur/eau, à évaporateur statique.  相似文献   

7.
针对目前生活、洗浴热水的需求不断上涨以及生活洗浴热水废水热存在巨大浪费的现状,介绍了一套新型的回收废水热的热泵热水器及其主要的设备构成.通过对该试验机组进行相关的试验研究,得到组合分离式热管蒸发器废热回收热量与污水质量流量、污水进口温度的变化关系;热泵平均制热量与污水质量流量、污水进口温度变化关系;压缩机吸排气压力及其功率随出热水温度的变化曲线;出热水温度与时间的变化曲线;系统能效比随出热水温度的变化,其平均能效比达到了3.01.与传统的电热水器、燃气热水器以及电辅助加热的热水器产品相比更节能环保.  相似文献   

8.
基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。  相似文献   

9.
太阳能是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为了促进节能与环境保护,太阳能热水系统已得到广泛应用。二氧化碳作为制冷工质具有一些独特的优势:环境友好物质(ODP=0,GWP=1),无回收问题;良好的安全性和化学稳定性;具有与制冷循环和设备相适应的热力学性质;具有良好的输运和传热性质。与常规制冷剂相比,二氧化碳跨临界循环的压缩比较小,约为2.5~4.0。介绍一种太阳能热水系统与跨临界二氧化碳热泵系统的组合系统,包括太阳能热水系统,二氧化碳热泵系统。针对不同气候条件,本系统分别采用制冷、热水、制热运行模式,从而实现热水、空调与热泵三大功能。  相似文献   

10.
A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5 kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump was equipped with a unique counter-flow tripartite gas cooler for preheating of domestic hot water (DHW), low-temperature space heating and reheating of DHW.

The CO2 heat pump was tested in three different modes: space heating only, DHW heating only and simultaneous space heating and DHW heating. The heat pump unit gave off heat to a floor heating system at supply/return temperatures of 33/28, 35/30 or 40/35 °C, and the set-point temperature for the DHW was 60, 70 or 80 °C. Most tests were carried out at an evaporation temperature of −5 °C, and the average city water temperature was 6.5 °C. The experimental results proved that a brine-to-water CO2 heat pump system may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pump systems as long as: (1) the heating demand for hot water production constitutes at least 25% of the total annual heating demand of the residence, (2) the return temperature in the space heating system is about 30 °C or lower, (3) the city water temperature is about 10 °C or lower and (4) the exergy losses in the DHW tank are small.  相似文献   


11.
溴化锂吸收式热泵机组可以有效回收利用工业和建筑中的各种形式低温余热,提高余热资源回收率,但设备参数对热泵性能影响很大.因此本文基于温度对口和梯级利用的原则,对蒸汽型双效溴化锂吸收式热泵机组内传热部件进行热力及传热分析,通过质量和能量守恒建立热泵机组数学模型,分析热网供水温度、蒸发器进口低温余热水温度和驱动热源温度这三个...  相似文献   

12.
In the present study, a novel solar driven combined power and ejector refrigeration system (CPER) of 50 kW power capacity composed of an ORC (organic Rankine cycle) and an ejector refrigeration system is investigated. Solar driven CPER system is composed of two main cycles: collector cycle and refrigeration cycle. The collector cycle is made of a U-tube ETC and circulation pump and the ejector refrigeration cycle consists of generator, turbine, ejector, heat exchanger, condenser, evaporator, expansion valve, and pump. Thermodynamic performance of the proposed CPER system is evaluated and a thermo-economic analysis is conducted using the SPECO (specific exergy costing) method. A parametric study showed the effects of condenser temperature, evaporator temperature, generator pressure, turbine back pressure and turbine extraction ratio. The genetic algorithm optimization analysis is conducted which shows 25.5% improvement in thermal energy, 21.27% in exergy efficiency, and 7.76% reduction in the total cost of the CPER system. The results reveal that the performance of the CPER system is considerably improved at higher temperatures of generator and evaporator.  相似文献   

13.
空气源热泵与太阳能热水系统集成设计探讨   总被引:1,自引:0,他引:1  
对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。  相似文献   

14.
In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate the thermal efficiency of the system, the inlet and outlet air temperatures and heat pipe temperature. Furthermore, the system performance is evaluated based on exergy efficiency. In order to verify the precision of the developed model, the numerical results are compared with experimental data. Parametric sensitivity for design features and material associated with the heat pipe, collector cover and insulation is evaluated to provide a combination with higher thermal performance. Simulation results show that applying a solar collector with more than 30 heat pipes is not efficient. The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of 56.8% and 7.2%, which can afford warm air up to 30°C. At the end, the capability of the proposed system to meet the heating demand of a building is investigated. It is concluded that the best method to reach a higher thermal covered area is to apply parallel collectors.  相似文献   

15.
结霜导致蒸发器的热阻增加,传热系数降低,系统COP减小,制约了空气源热泵的推广应用。本文在表面结霜机理研究现状的基础上,总结了影响结霜的各种因素相应除霜/抑霜技术,综述了逆循环、热气旁通和电加热三种常用除霜方法的研究进展,概括了改变空气参数、表面温度和换热器结构的抑霜效果,以及表面改性抑霜技术的研究现状。指出霜导热系数模型的局限性及除霜/抑霜技术存在的问题,提出今后应结合多种措施着重探索对水蒸气凝结、冷凝水冻结、霜层回融和塌陷等阶段均有较强抑制作用的抑霜技术。  相似文献   

16.
The primary energy consumption of two kinds of solar assisted absorption systems (solar assisted absorption chiller during summertime and heat pump during wintertime or solar assisted absorption chiller with direct gas combustion for heating during wintertime) is compared with the primary energy consumption of a compression chiller which can work as a heat pump during wintertime. For the absorption systems three technical options were considered: a single effect machine; a double effect machine with the solar energy delivered to the lower temperature desorber and combustion heat of a gas burner delivered to the higher temperature desorber; a double effect machine with both solar energy and combustion heat delivered to the higher temperature desorber. The analysis performed in this article shows that solar assisted absorption chillers, absorption heat pumps and direct solar heating systems even with low and intermediate solar fractions can operate with considerably less primary energy consumption than compression systems. Further, the necessary solar collector area to achieve that goal is compatible with roof area available in buildings. It was also verified that, for the double effect absorption machines, there is no advantage in delivering the solar energy to the higher temperature desorber, thus establishing as preferable the solution in which it is delivered to the lower temperature desorber.  相似文献   

17.
王芸  端木琳  李祥立  仝仓 《制冷学报》2022,43(3):121-132
太阳能辅助土壤源热泵复合系统是严寒寒冷地区实施清洁供能的重要手段之一。在该系统中,太阳能集/蓄热系统与土壤源热泵系统有不同的连接方式和运行模式,太阳能系统的运行时间直接影响土壤的热恢复程度。本文基于TRNSYS平台建立了可全年进行蓄热的太阳能辅助土壤源热泵复合系统,提出了独立双埋管土壤蓄热器模拟计算方法,并与现场测试数据进行了对比验证。基于大连市公共建筑实际工程,通过正交试验设计及TRNSYS模拟全面研究了系统运行参数,得到对系统运行能耗与土壤温度变化率有重要影响的运行参数并分析了其影响规律。结果表明:系统运行能耗与冬季热泵供水温度、负荷侧水流量、土壤侧水流量均呈正相关,与夏季热泵供水温度呈负相关;当累计供热供冷量比为1.31时,系统运行能耗与蓄热启动温度呈负相关;当累计供热供冷量比为2.32时,与蓄热启动温度为正相关;当累计供热供冷量比为1.77时且蓄热启动温度为35℃时,系统运行能耗最低。土壤温度变化率与蓄热启动温度呈负相关。应根据系统累计供热供冷量比来相应调节太阳能系统运行时间和运行参数。  相似文献   

18.
本文确定了设计计算参数下小型太阳能气泡泵吸收式制冷机制冷循环中各状态点参数,进行了发生器、冷凝器、蒸发器、吸收器、溶液热交换器的热负荷计算和加热热水、冷水、冷却水、稀溶液等循环介质的流量计算.进行了发生器、冷凝器、蒸发器、吸收器、溶液热交换器等换热设备所需的传热面积计算.根据求得的传热面积确定了各换热设备的传热管数,计算了热水进出口配管、冷却水进口配管、冷媒水进口配管的内径尺寸,为开发小型吸收式制冷机提供了一定的理论和实践基础.  相似文献   

19.
This paper deals with the inverse analysis of a double-glazed flat-plate solar collector using the artificial bee colony (ABC) optimization algorithm. In domestic water heating, both low and high heat output from the solar collector is undesirable, so the solar collector is required to supply the hot water at a particular temperature only, which in turn requires a given distribution of heat loss factor. With this criterion, the present analysis is aimed at predicting feasible dimensions and configurations of a solar collector satisfying a prescribed distribution of heat loss factor using ABC algorithm. It is observed that many feasible alternatives of unknowns exist which satisfy a prescribed requirement, and using the ABC algorithm, the size of the solar collector can be minimised by 6–32% with reference to the existing records. The effects of changing ambient conditions are also studied. Furthermore, a comparative study of the ABC algorithm against other heuristic algorithms reveals its suitability and efficacy for the present estimation problem.  相似文献   

20.
Multi heat pumps have been widely used in buildings due to their higher energy efficiency. Recently, demands for multi-functional heat pumps, which can provide heating, cooling, and water heating in a building, have been increased. In this study, a cascade multi-functional heat pump, combining a multi heat pump using R410A for air heating with a water heating unit using R134a for hot water supply, was investigated experimentally. The performance of the cascade multi-functional heat pump was measured by varying the refrigerant charge amount, EEV opening, water flow rate, and water inlet temperature. Test results were compared with those of a single-stage multi-functional heat pump using R410A for air and water heating. The cascade multi-functional heat pump adopting the water heating unit showed more stable air and water heating operations and higher water outlet temperatures than the single-stage multi-functional heat pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号