首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

2.
This paper investigates the effect that an additive had on the boiling performance of an R134a/polyolester lubricant (POE) mixture and an R123/naphthenic mineral oil mixture on a roughened, horizontal flat surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for the R134a/POE (98% mass fraction/2% mass fraction) mixture before and after use of the additive. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of the R134a/POE lubricant mixture before and after use of the additive. The measurements obtained from the spectrofluorometer suggest that the additive increases the total mass of lubricant on the boiling surface. The heat transfer data show that the additive caused an average and a maximum enhancement of the R134a/POE heat flux between 5 kW m−2 and 22 kW m−2 of approximately 73% and 95%, respectively. Conversely, for nearly the same heat flux range, the additive caused essentially no change in the pool boiling heat flux of an R123/mineral oil mixture. The lubricant excess surface density and interfacial surface tension measurements of this study were used to form the basis of a hypothesis for predicting when additives will enhance or degrade refrigerant/lubricant pool boiling.  相似文献   

3.
制冷剂混合物水平微翅管内流动沸腾研究综述   总被引:1,自引:0,他引:1  
马虎根 《制冷学报》2001,19(4):29-34
本文对目前国内外制冷剂混合物在水平微翅管内流动沸腾特性的实验研究进行了综述。讨论了混合物在微翅管内流动沸腾的强化特性、替代制冷剂换热性能的比较和润滑油对换热的影响。同时,对进一步的研究提出了一些建议。  相似文献   

4.
混合工质水平管内流动凝结换热研究进展   总被引:1,自引:0,他引:1  
从实验和模型两个方面,综述了国外对混合工质在水平光管和强化管内流动凝结换热的研究。对多种公开发表的混合工质凝结换热关联式的适用性和准确性进行了讨论。同时,指出了现有研究方法和研究内容的不足,以及应进一步深入研究之处。  相似文献   

5.
6.
在对R134a在水平直齿外翅片管表面冷凝传热理论研究的基础上,利用用计算机建立了传热数学模型,并在实验室中用5根紫铜外翅片铜管进行试验验证,结果表明该理论数学模型在一定范围内的预测值是准确的.  相似文献   

7.
Carbon dioxide is again becoming an important refrigerant. While the thermophysical properties are well known there is a lack of data on its heat transfer characteristics.

In this study, heat transfer coefficients for nucleate boiling of carbon dioxide are determined using a standard apparatus for the investigation of pool boiling based on a set-up from Karlsruhe [D. Gorenflo, J. Goetz, K. Bier. Vorschlag für eine Standard-Apparatur zur Messung des Wärmeübergangs beim Blasensieden. Wärme-und Stoffübertragung 16 (1982), 69–78; J. Goetz, Entwicklung und Erprobung einer Normapparatur zur Messung des Wärmeübergangs beim Blasensieden. Dissertation Universität Karlsruhe (1980).] and built at our institute. Electrically heated horizontal cylinders with an outer diameter of 16 mm and a length of 100 mm are used as heating elements. Measurements with constant heat flux are performed for different wall materials and surface roughnesses. The heat transfer is investigated within the pressure range of 0.53≤ p ≤1.43 MPa (0.072≤ p/pc ≤0.190) and a temperature range of −56≤ t ≤−30 °C, respectively. Heat fluxes of up to 80,000 W m−2 are applied.

The influences of wall material and roughness on the heat transfer coefficient are evaluated separately. The obtained coefficients are compared to generally accepted correlations and to experimental results of other authors, who used similar configurations with copper tubes and carbon dioxide. These are the only previous experimental data, which could be found. Results for copper, stainless steel and aluminium as wall materials are presented.  相似文献   


8.
Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8–36 kW m2, and mass flux of 49.2–201.8 kg m2 s1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.  相似文献   

9.
This paper presents a new method to predict the heat transfer coefficient during flow boiling inside horizontal tubes containing twisted tape inserts. The method was developed based on the database presented by Kanizawa et al. This database comprises flow boiling results for horizontal tubes with internal diameters of 12.7 and 15.9 mm, twisted-tape ratios of 3, 4, 9 and 14, mass velocities ranging from 75 to 200 kg m−2 s−1, heat fluxes of 5 and 10 kW m−2 and saturation temperatures of 5 and 15 °C. The method is flow-pattern based and considers flow boiling, dryout and mist flow regions. The predictive method also takes into account the physical picture of the swirl flow phenomenon by considering swirl flow effects promoted by the twisted tape insert. The proposed method provides satisfactory predictions and captures the main heat transfer trends of the data of Kanizawa et al. and also of independent data from literature.  相似文献   

10.
11.
R32/R134a水平内螺纹管内流动沸腾强化换热实验研究   总被引:2,自引:0,他引:2  
对非共沸混合制冷剂R32/R134a(25%Wt/75%Wt)在水平内螺纹强化管中的流动沸腾换热特性进行了研究。实验结果表明:在内螺纹强化管中的流动沸腾换热性能比在光管中有较明显的提高,强化管强化系数变化的大致范围为1.5~2.2。根据活化穴、二次流和毛细提升三者之间的相互作用,探讨了内螺纹强化管的强化机理;并从重力影响、非共沸混合工质组分差与二次流影响的角度上,对在环状流下混合工质剂2/R134a在内螺纹强化管和光管中流动沸腾换热时管子周向壁温的变化特征作出了分析。  相似文献   

12.
This paper presents results concerning flow boiling heat transfer in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The refrigerant flowing in the minichannel, Fluorinert FC-72, was heated by a thin foil microstructured on the side in contact with the fluid. Two types of microstructured surfaces were used: one with evenly distributed microcavities and the other with non-uniformly distributed minicavities. Liquid crystal thermography was applied to determine the temperature of the smooth side of the foil. The paper analyses mainly the impact of the microstructured heating surface and orientation of the minichanel on the heat transfer coefficient and two phase pressure drop. This required calculating the local values of heat transfer coefficient and measuring the pressure drop for different positions of the minichannel with enhanced heating wall. Moreover, the effects of selected thermal and flow parameters (mass flux density and inlet pressure), the geometric parameters, and the type of cooling liquid on the nucleate boiling heat transfer is studied. From the measurement results it is evident that applying a microstructured surface caused an increase in the heat transfer coefficient, which was approximately twice as high as that reported for the smooth surface. The highest values of the coefficient were observed for position 90° (the vertical minichannel) and position 0° (the horizontal minichannel), whereas the lowest were reported for position 180° (the horizontal minichannel). The experimental data concerning the two-phase flow pressure drop was compared with the calculation results obtained by applying nine correlations known from the literature. It is reported that most of the correlations can be used to predict the two-phase flow pressure drop gradient within an acceptable error limit (±30%) only for positions 90° and 135° (the vertical and inclined minichannels, respectively). The lowest agreement between the experimental data and the theoretical predictions was reported for the horizontal positions of the minichannel.  相似文献   

13.
实验测定了四氟甲烷(R14)在内径为6 mm的水平管内两相流动沸腾传热特性.实验测试的压力范围为0.22-0.60 MPa,热流密度范围19.9-73.6 kW/m2,质量流量范围370-862 kg/m2s.实验结果表明,传热系数随质量流量的增大而有一定程度的上升,而热流密度及饱和压力与传热系数呈明显的正相关关系.将实验数据与已有文献模型的计算结果进行比较发现,Kandlikar模型、Gungor-Winterton模型以及Shah模型与实验数据的关联性较好,平均偏差均在15%以内.  相似文献   

14.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

15.
The flow boiling heat transfer coefficient of the low-GWP (global warming potential) refrigerant HFO-1234yf inside a smooth small-diameter horizontal tube (inner diameter: 2 mm) was experimentally investigated. The local heat transfer coefficient was measured at heat fluxes of 6-24 kW m−2, mass fluxes of 100-400 kg m−2 s−1, an evaporating temperature of 288.15 K, and an inlet vapor quality of 0-0.25. The results show that the effect of heat flux on the heat transfer was large at low vapor quality, while the effect of mass flux was large at high vapor quality. The heat transfer coefficient of HFO-1234yf was almost the same as that of R-134a. The heat transfer coefficients calculated based on correlations with Saitoh et al. agreed well with the measured values compared to other correlations. The measured pressure drop agreed well with that predicted by the Lockhart-Martinelli correlation.  相似文献   

16.
An experimental study of the condensation of pure and mixed refrigerants of R22 and R114 inside a spirally grooved horizontal copper tube has been carried out. A double-tube counterflow condenser in the pressure range 3–21 bar and at a mass flow-rate 26–70 kg h−1 was used. The axial distributions of refrigerant, tube wall and cooling water temperatures, wall heat flux density and vapour quality are shown graphically. The variation of tube wall temperature around the circumference of the tube is also shown. The local Nusselt number depends on the molar fraction, whereas the average Nusselt number can be correlated by an equation which is modified from a previously established equation for pure refrigerants inside a horizontal smooth tube. The frictional pressure drop evaluated is correlated well by the Lockhart-Martinelli parameters and is independent of the concentration of the mixture.  相似文献   

17.
A dimensionless correlation is presented for calculation of local heat transfer coefficients during saturated boiling in bundles of plain and enhanced tubes. It has been verified with a wide range of data that include 12 fluids (water, ammonia, halocarbon refrigerants, and hydrocarbons), plain and a variety of enhanced tubes of many materials, inline and staggered arrangements, pitch to diameter ratios 1.17 to 2.0, reduced pressures from 0.005 to 0.2866, mass flux from 0.17 to 1391 kgm−2s−1, heat flux from 1 to 1000 kWm−2, and vapor quality from 0 to 0.98. A total of 2173 data points from 51 data sets from 28 sources are predicted with mean absolute deviation of 15.2%.  相似文献   

18.
Condensation heat transfer and pressure drop of R170 were studied experimentally in a horizontal tube with inner diameter of 4 mm. The tests were conducted at saturation pressures from 1 MPa to 2.5 MPa, mass fluxes from 100 kg (m2∙s)−1 to 250 kg (m2∙s)−1 and average heat fluxes from 55.3 kW m−2 to 96.3 kW m−2 over the entire vapor quality range. The effects of vapor quality, mass flux and saturation pressure on condensation heat transfer and pressure drop were examined and analyzed. The experimental data were compared with various well-known correlations of condensation heat transfer coefficient and pressure drop. The comparison results showed that Koyama et al. correlation agreed with the experimental heat transfer coefficient with a mean absolute relative deviation less than 25%, and the Yan and Lin correlation can accurately predict the experimental pressure drop with a mean absolute relative deviation less than 18%.  相似文献   

19.
Pool boiling heat transfer from a horizontal copper tube coated with 0.2 mm of aluminum oxide-titanium oxide ceramics has been investigated for several pure fluids (refrigerants and hydrocarbons) and three propane/n-butane mixtures. The heat transfer coefficient shows a similar dependence on heat flux and normalized saturation pressure as with a metallic heating tube. At normalized saturation pressures p/pc0.1, the absolute values of the heat transfer coefficient are just as high as for a sandblasted copper tube of similar surface roughness and at lower saturation pressures even higher. The negative influence of the low thermal conductivity of the ceramics is completely compensated or even overcompensated by the positive influence of the microstructure which results in a higher nucleation site density. This is especially effective in pool boiling of mixtures.  相似文献   

20.
Heat transfer during nucleate pool boiling was experimentally determined for the mixtures R-12/R-113, R-22/R-12, R-13/R-12, R-13/R-22 and R-23/R-13. For purposes of comparison, the respective five pure refrigerants were also investigated. Dependent upon the mixture, the measurements were made at boiling pressures of p = 0.1 to 2 MPa within the temperature region of t = 198 to 333 (−75° + 60°C) and at heat fluxes of Q = 4 × 103 to 105 W m−2. A horizontal, electronically heated copper plate with A = 3 cm2 was used. The following quantities were measured: pressure; temperature difference between the heating surface and the boiling liquid; composition and temperature in the liquid and vapour phases; and heat flow rate. The mean error of the heat transfer coefficients found was ± 5%.The results clearly show that the heat transfer for an evaporating mixture deteriorates as compared to the pure components. Essential parameters influencing this reduction are pressure, difference between vapour and liquid composition and heat flux. The fundamental relations and characteristic differences between the individual mixtures are illustrated by figures. The heat transfer coefficients measured can be represented within the whole region studied by a modified relation according to Körner.Observation of the process of evaporation has shown that by agitation (increase of convection) the heat transfer in mixtures can be improved. Additional experiments with evaporation during fluid flow in a pipe are presently in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号