首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research investigated the wheel wear and tribological characteristics in wet, dry, and minimum quantity lubrication (MQL) grinding of cast iron. Water-based Al2O3 and diamond nanofluids were applied in the MQL grinding process and the grinding results were compared with those of pure water. During the nanofluid MQL grinding, a dense and hard slurry layer was formed on the wheel surface and could benefit the grinding performance. Experimental results showed that G-ratio, defined as the volume of material removed per unit volume of grinding wheel wear, could be improved with high-concentration nanofluids. Nanofluids showed the benefits of reducing grinding forces, improving surface roughness, and preventing workpiece burning. Compared to dry grinding, MQL grinding could significantly reduce the grinding temperature.  相似文献   

2.
Minimum quantity lubrication (MQL) grinding using nanofluid showed superior grinding performance by reducing the grinding force and surface roughness in comparison with that of pure base fluid MQL grinding. In this study, the conditions of the grinding interaction between the grinding wheel and the workpiece were simulated by a pin-on-flat tribotester. The role of nanofluid in MQL grinding process was investigated through friction and wear experiments. The results show that nanoparticles, especially Al2O3, added to base fluid exhibit noticeable friction reduction and anti-wear properties. The addition of Al2O3 nanoparticles in deionized water decreased the friction coefficient and the worn weight by 34.2 and 43.4 %, respectively, as compared to the pure deionized water. Furthermore, investigation was performed using scanning electron microscopy and surface profilometer to interpret the possible mechanisms of friction reduction and anti-wear with nanoparticles.  相似文献   

3.
In this study, the lubrication and cooling properties of eco-friendly graphite nanofluids in MQL grinding were investigated. Grinding forces, subsurface temperature of workpiece, surface roughness, micro-hardness and metallographic observations of ground surfaces were employed to evaluate the performance of synthesized nanofluids as lubricant under different grinding parameters. The results were also compared with grinding in dry, pure MQL and flood cooling conditions. The results showed that the tangential forces and force ratios in grinding using graphite nanofluid MQL are lower than that of other lubricating methods especially at extreme cutting parameters. Also, application of graphite nanofluid MQL reduced the grinding temperature at high velocities of workpiece. These reductions could be attributed to the formation of a tribofilm on the ground surface by the present of graphite nanoparticles in the wheel-workpiece interface. Additionally, the presence of this tribofilm in the contact area generated a smooth surface even at high depth of cut and velocity of workpiece. Furthermore, the micro-hardness of ground surfaces increased in graphite nanofluid MQL grinding because of infiltration of graphite nanoparticles in the grinding surface and the plastic deformation of subsurface of workpiece.  相似文献   

4.
《Wear》2006,260(4-5):450-457
Intermetallic Mo(Si,Al)2, Mo(Si,Al)2/Al2O3, Mo(Si,Al)2/SiC and Mo(Si,Al)2/ZrO2 composites produced by spark plasma sintering of mechanically alloyed powders were tested on a block-on-cylinder apparatus, sliding against an AA6063 alloy cylinder at elevated temperature. Abrasion, micro-fracture and surface tribochemical reactions were found to be the operative wear mechanisms, producing severe wear in the investigated alloys. Abrasive wear by pull-out of Al2O3 and micro-fracture of Mo(Si,Al)2 particles promotes severe wear in the Mo(Si,Al)2/Al2O3 composite. In the Mo(Si,Al)2/SiC composites, hard SiC inclusions suppressed the abrasive wear, but a tribochemical reaction was found to be the dominant wear mechanism. A combination of abrasion by pull-out of Al2O3 particles and a tribochemical reaction was revealed to be the main wear mechanism in the Mo(Si,Al)2/ZrO2 materials. The brittleness index B = H/K1C was applicable for prediction of the relative wear resistance. In agreement with the suggested model, the lowest wear rate, corresponding to B = 5.5–6.5 μm−1/2, was found in the Mo(Si,Al)2/30 vol.% SiC and Mo(Si,Al)2/30 vol.% ZrO2 composites.  相似文献   

5.
The nanofluid is usually applied in minimum quantity lubricant (MQL) grinding to decrease grinding temperature and to improve surface integrity of workpiece. However, a large challenge in the application process of nanofluid is the sedimentation of the nanoparticles due to their poor suspension stability in the base fluid. Then, the lubrication and heat conduction characteristics of nanofluid will be deteriorated, and the nanofluid cannot be atomized as expected during grinding. Therefore, the heat transfer performance of nanofluid during MQL grinding severely decreased. In this study, the force state of nanoparticle in base fluid was analyzed and the effect of dispersant on the force state of nanoparticle was researched. The suspension stability of Al2O3 (0.5 wt.%) nanofluid was investigated under different ultrasonic vibration times, pH values, and dispersant concentrations (sodium dodecyl benzene sulfonate, SDBS). It is found that the suspension stability of nanofluid is quite poor under short-time ultrasonic vibration condition, and the nanofluid with good suspension stability can be obtained when the ultrasonic vibration time exceeds 0.5 h. A higher concentration of SDBS will lead to a better suspension stability of nanofluid when the concentration of SDBS is quite low. However, if the concentration of SDBS exceeds 0.5 wt.%, there is oversaturated adsorption on the nanoparticles surface which results in the deterioration of suspension stability of nanofluid with the increase of the SDBS concentration. As pH value is below 7, the suspension stability of nanofluid is significantly improved with the increase of pH value. The sedimentation clearly appeared in the disperse system when pH value is higher than 7. The dispersion morphology of the Al2O3 nanoparticles in disperse system is analyzed by using a scanning electron microscope. It is found that some large aggregates appeared when no dispersant was applied in the disperse system, and the Al2O3 nanoparticles are uniformly dispersed in disperse system with the application of the dispersant.  相似文献   

6.
Vegetable oil is a low toxic, excellent biodegradable and renewable energy source used as an ideal lubricating base oil in machining. Castor oil exhibits good lubrication performance but poor mobility, which limits its application especially in precision grinding. The main objective of the work presented to obtain optimal mixed vegetable based-oil and optimal nanoparticles adding concentration in grinding Ni-based alloy with minimum quantity lubrication. An experimental investigation is carried out first to study the different vegetable oils with excellent mobility mixed with castor oil. The lubrication property of the oil was evaluated in terms of grinding force, force ratio, specific grinding energy, and surface roughness. Based on the test conditions, it is found that soybean/castor mixed oil obtained the optimal results (μ= 0.379, U = 83.27 J/mm3 and Ra = 0.325 μm) and lubricating effect compared with castor oil and other mixed base oils. To further explore the lubricating capability of soybean/castor mixed oil, MoS2 nanoparticles which have excellent lubricating property were added into the soybean/castor mixed oil to prepare different concentrations nanofluids. From the present study, it can be concluded that 8% mass fraction of the oil mixture should be added to obtain the optimal machining results, with the lowest force ratio (0.329), specific energy (58.60 J/mm3), and average grinding temperature (182.6 °C). Meanwhile, better surface microtopography of ground parts and grinding debris morphologies were also observed for the machining conditions.  相似文献   

7.
Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.  相似文献   

8.
《Wear》2007,262(5-6):641-648
The present study concerns the wear behavior of laser composite surfaced Al with SiC and Al + SiC particulates. A thin layer of SiC and Al + SiC (at a ratio of 1:1 and dispersed in alcohol) were pre-deposited (thickness of 100 μm) on an Al substrate and laser irradiated using a high power continuous wave (CW) CO2 laser. Irradiation leads to melting of the Al substrate with a part of the pre-deposited SiC layer, intermixing and followed by rapid solidification to form the composite layer on the surface. Following laser irradiation, a detailed characterization of the composite layer was undertaken in terms of microstructure, composition and phases. Mechanical properties like microhardness and wear resistance were evaluated in detail. The microstructure of the composite layer consists of a dispersion of partially melted SiC particles in grain refined Al matrix. Part of the SiC particles are dissociated into silicon and carbon leading to formation of the Al4C3 phase and free Si redistributed in the Al matrix. The volume fraction of SiC is maximum at the surface and decreases with depth. The microhardness of the surface improves by two to three times as compared to that of the as-received Al. A significant improvement in wear resistance in the composite surfaced Al is observed as compared to the as-received Al. The mechanism of wear for as-received vis-à-vis laser composite surfaced Al has been proposed.  相似文献   

9.
In grinding process, the abrasives plunge and slide against the workpiece during material removal with high specific energy consumption and high grinding zone temperature. To improve process efficiency, lubrication becomes an important requirement of the grinding fluids, along with chip removal and cooling the grinding zone. Grinding fluids have negative influences on the working environment and machining cost in terms of the health of the machine operator, pollution, the possibility of explosion (for oil), filtering, and waste disposal. The use of minimum quantity of lubrication (MQL) with an extremely low consumption of lubricant has been reported as a technologically and environmentally feasible alternative to flood cooling. This paper deals with an investigation of the grindability of hardened stainless steel (UNS S34700) and aluminum alloy AA6061 using dry, MQL, and conventional fluid techniques. One type of SiC and five types of Al2O3 wheels (corundum) as well as vegetable and synthetic ester MQL oils have been tested. The influences of wheel and coolant–lubricant types have been studied on the basis of the grinding forces, surface topography, and surface temperature. Synthetic ester MQL oil was found to give better grinding performance than the vegetable MQL oils. It was argued that the improved performance of the ester oil is caused by the formation of tribo-films on the abrasives and the workpiece, which enhances lubrication by inhibiting metal–abrasive interaction. Also, the grindability of the machined specimens was found to increase substantially by using the MQL grinding process with soft and coarse wheels. In MQL grinding of AA6061 alloy, the use of vegetable oil resulted in the lowest surface roughness, whereas using synthetic ester additives lead to highest surface roughness because of higher chip loading on the grinding wheel and consequently more redeposited material on the workpiece surface.  相似文献   

10.
AlCrOxN1−x coatings were arc deposited onto HSS drills and WC–Co end mills at N2/O2 ratios of 0.9–0.75 using DC or 10 kHz pulse bias. Lower O2 content coatings had a hardness of 32.5 GPa. whereas 0.25 O2 ratio coatings were 24–25 GPa. AlCrOxN1−x coated 6.35 mm Dia. HSS jobber drills were tested by drilling 2.5D holes in AISI D2. 10 kHz 0.9 N2 0.1 O2 coatings drilled a mean of 17.6 holes/µm, similar to commercial AlCrN coated drills at 17.8 holes/µm, whereas DC 0.75 N2 0.25 O2 coatings drilled 9 holes/µm. AlCrOxN1−x coated WC–Co end mills had low steady state wear in milling AISI 316L (70 m/min, MQL) and cut >24 m whereas uncoated tools cut 6 m. In contrast to drilling DC 0.75 N2 0.25 O2 tools had the least corner wear and low adhesion on the rake face.  相似文献   

11.
In this paper, a novel ultrasonic vibration assisted grinding (UVAG) technique was presented for machining hard and brittle linear micro-structured surfaces. The kinematics of the UVAG for micro-structures was first analyzed by considering both the vibration trace and the topological features on the machined surface. Then, the influences of the ultrasonic vibration parameters and the tilt angle on the ground quality of micro-structured surfaces were investigated. The experimental results indicate that the introduction of ultrasonic vibration is able to improve the surface quality (The roughness SRa was reduced to 78 nm from 136 nm), especially in guaranteeing the edge sharpness of micro-structures. By increasing the tilt angle, the surface roughness can be further reduced to 56 nm for a 59% improvement in total. By using the preferred UVAG parameters realized by orthogonal experiments, a micro cylinder array with surface roughness of less than 50 nm and edge radius of less than 1 μm was fabricated. The primary and secondary sequence of the grinding parameters obtained by the orthogonal experiments are as follows: feed rate, tilt angle of workpiece, depth of grinding, vibration frequency and amplitude. The spindle speed in the range of 1000 rpm–3000 rpm does not significantly affect the machined micro-structured surface roughness. Finally, more micro-structures including a micro V-groove array and a micro pyramid array were machined on binderless WC as well as SiC ceramic by means of the UVAG technique. The edge radius on the V-grooves and pyramids are both less than 1 μm, indicating the feasibility of UVAG in machining hard and brittle micro-structured surfaces for an improved surface quality.  相似文献   

12.
Wear behavior of nanostructured Al6061 alloy and Al6061–Al2O3 nanocomposites produced by milling and hot consolidation were investigated. The samples were characterized by hardness test, pin-on-disk wear test, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposites containing 3 vol% Al2O3 showed a maximum hardness of 235 HV and optimum wear rate of 4×10−3 mg/m. Increasing the amount of Al2O3 up to 5 vol% resulted in decrease in hardness values (∼112 HV) and a sharp rise in wear rate (∼18×10−3 mg/m).  相似文献   

13.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

14.
In this research, silver and alumina particles were co-deposited within Ni–P matrix to obtain Ni–P–Ag–Al2O3 hybrid coating. The structure of coatings was analyzed by X-ray diffraction and the tribological properties of deposits were evaluated by pin on disc tribometer. 3D optical profiler and scanning electron microscopy were used to study wear rate and worn surfaces. The results showed that Ni–P–Ag and Ni–P–Ag–Al2O3 coatings have the self-lubrication property and maximum hardness (∼1310 HV) and wear resistance were obtained for Ni–P–Al2O3 coating. Also, Ni–P–Ag–Al2O3 hybrid nanocomposite coating had higher wear resistance than Ni–P and Ni–P–Ag coatings. Moreover, the best conditions was achieved for heat treated hybrid coating in the concentration of 30 mg/L silver and 150 mg/L alumina in the plating solution.  相似文献   

15.
Alumina-carbon nanofibres (CNFs) and silicon carbide–CNFs nanocomposites with different volume fraction of CNFs (0–100 vol.%) were obtained by spark plasma sintering. The effect of CNFs content on the tribological behaviour in dry sliding conditions on the ceramic–carbon nanocomposites has been investigated using the ball-on-disk technique against alumina balls. The wear rate of ceramic–CNFs nanocomposites decreases with CNFs increasing content. The friction coefficient of the Al2O3/CNFs and SiC/CNFs nanocomposites with high CNFs content was found to be significantly lower compared to monolithic Al2O3 and SiC due to the effect of CNFs and unexpectedly slightly lower than CNFs material. The main wear mechanism in the nanocomposite was abrasion of the ceramic and carbon components which act in the interface as a sort of lubricating media. The experimental results demonstrate that the addition of CNFs to the ceramic composites significantly reduces friction coefficient and wear rate, resulting in suitable materials for unlubricated tribological applications.  相似文献   

16.
Nanostructured Cu–Al2O3 powders obtained by the reduction of CuO with Al in a high energy ball mill were successfully consolidated by Pulsed Electric Current Sintering (PECS). The effect of the composition and microstructure of these PECS Cu–Al2O3 cermets on their strength was investigated. The friction and wear behavior of these cermets were studied under reciprocating sliding against corundum at 23 °C and 50% RH, and compared to the behavior of coarse grained PECS sintered pure copper. The effect of grain size on the coefficient of friction was masked by the formation of a surface tribolayer. The wear depth recorded on Cu–Al2O3 is lesser than half the one on coarse grained copper. Surface and subsurface deformation studied through FIB cross-sections showed that delamination and oxidative wear were active on Cu and Cu–Al2O3 cermets respectively under the current sliding test conditions. PECS Cu–Al2O3 cermets showed a good thermal stability even at 600 °C.  相似文献   

17.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

18.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

19.
Hong Chang  Jon Binner  Rebecca Higginson 《Wear》2010,268(1-2):166-171
Aluminium alloys, reinforced with ceramic particles or fibres, are desired materials in high performance applications due to their superior properties. In this paper, gel-cast Al2O3 foams were pressurelessly infiltrated using an Al–8 wt.% Mg alloy. The wear rates of the alloy and the Al(Mg)/Al2O3 interpenetrating composites were tested under dry sliding conditions; effects of Al2O3 foam density and cell size on the composite wear resistance under different loads and sliding distances were investigated. A ‘ploughing’ mechanism was observed in all the composites after an initial 250 m sliding distance, whilst the composites with the higher foam density show a ‘two-stage’ wear with sliding distance. The decrease in the wear rate in the second stage in the latter is attributed to an Al2O3 network protruding out of the worn surface, which protects the direct wear of the Al(Mg) alloy by the counter ball. Within the range studied, a larger cell size is preferred for better wear resistance.  相似文献   

20.
In this paper, the Taguchi method and regression analysis have been applied to evaluate the machinability of Hadfield steel with PVD TiAlN- and CVD TiCN/Al2O3-coated carbide inserts under dry milling conditions. Several experiments were conducted using the L18 (2 × 3 × 3) full-factorial design with a mixed orthogonal array on a CNC vertical machining center. Analysis of variance (ANOVA) was used to determine the effects of the machining parameters on surface roughness and flank wear. The cutting tool, cutting speed and feed rate were selected as machining parameters. The analysis results revealed that the feed rate was the dominant factor affecting surface roughness and cutting speed was the dominant factor affecting flank wear. Linear and quadratic regression analyses were applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for minimum surface roughness and flank wear in the milling the Hadfield steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号