首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have indicated that only one cleavage site (Ala-1/Val+1) is involved in the release of mature TNF from human pro-TNF, whereas others have suggested that the linking sequence (residues -20 to -1) may be important. We previously demonstrated that a pro-TNF deletion mutant, delta -20- -1, was able to form a trimeric structure and mediate TNF cytotoxicity in a juxtacrine fashion without releasing mature TNF. We constructed seven mutants with smaller deletions within this region. Three 15-residue deletion mutants, delta -20- -6, delta -15- -1 and delta -20- -16, -10- -1, were noncleavable, although able to form a trimer and to mediate cytotoxicity through cell-to-cell contact. Three five- or ten-residue deletion mutants, delta -20- -16, delta -10- -1, and delta -5-, -1, behaved like the wild-type TNF; all formed a trimer and released mature TNF. These results suggested that in pro-TNF (1) the number of residues between the base of the trimer and the plasma membrane determines accessibility of the cleavage site to the pro-TNF processing enzyme(s) since small deletions did not block cleavage whereas large ones did regardless of the presence of the native cleavage site (-1/+1), (2) the native cleavage site is not sufficient for releasing mature TNF because mutant delta -20- -6, in which the native cleavage site was intact, was noncleavable, and (3) alternative cleavage site(s) may exist since mutants delta -10- -1 and delta -5- -1, which lack the native cleavage site, were cleavable.  相似文献   

2.
The conjugative plasmid pRSD2 carries a raf operon that encodes a peripheral raffinose metabolic pathway in enterobacteria. In addition to the previously known raf genes, we identified another gene, rafY, which in Escherichia coli codes for an outer membrane protein (molecular mass, 53 kDa) similar in function to the known glycoporins LamB (maltoporin) and ScrY (sucrose porin). Sequence comparisons with LamB and ScrY revealed no significant similarities; however, both lamB and scrY mutants are functionally complemented by RafY. Expressed from the tac promoter, RafY significantly increases the uptake rates for maltose, sucrose, and raffinose at low substrate concentrations; in particular it shifts the apparent K(m) for raffinose transport from 2 mM to 130 microM. Moreover, RafY permits diffusion of the tetrasaccharide stachyose and of maltodextrins up to maltoheptaose through the outer membrane of E. coli. A comparison of all three glycoporins in regard to their substrate selectivity revealed that both ScrY and RafY have a broad substrate range which includes alpha-galactosides while LamB seems to be restricted to malto-oligosaccharides. It supports growth only on maltodextrins but not, like the others, on raffinose and stachyose.  相似文献   

3.
TOM22 is an integral component of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The protein is anchored to the lipid bilayer by a central trans-membrane segment, thereby exposing the amino-terminal domain to the cytosol and the carboxyl-terminal portion to the intermembrane space. Here, we describe the sequence requirements for the targeting and correct insertion of Neurospora TOM22 into the outer membrane. The orientation of the protein is not influenced by the charges flanking its trans-membrane segment, in contrast to observations regarding proteins of other membranes. In vitro import studies utilizing TOM22 preproteins harboring deletions or mutations in the cytosolic domain revealed that the combination of the trans-membrane segment and intermembrane space domain of TOM22 is not sufficient to direct import into the outer membrane. In contrast, a short segment of the cytosolic domain was found to be essential for the import and assembly of TOM22. This sequence, a novel internal import signal for the outer membrane, carries a net positive charge. A mutant TOM22 in which the charge of the import signal was altered to -1 was imported less efficiently than the wild-type protein. Our data indicate that TOM22 contains physically separate import and membrane anchor sequences.  相似文献   

4.
The anti-epileptic, anti-hyperalgesic, and anxiolytic agent gabapentin (1-(aminomethyl)-cyclohexane acetic acid or Neurontin) has previously been shown to bind with high affinity to the alpha2delta subunit of voltage-dependent calcium channels (Gee, N. S. , Brown, J. P., Dissanayake, V. U. K., Offord, J., Thurlow, R., and Woodruff, G.N. (1996) J. Biol. Chem. 271, 5768-5776). We report here the cloning, sequencing, and deletion mutagenesis of the alpha2delta subunit from porcine brain. The deduced protein sequence has a 95.9 and 98.2% identity to the rat and human neuronal alpha2 delta sequences, respectively. [3H]Gabapentin binds with a KD of 37.5 +/- 10.4 nM to membranes prepared from COS-7 cells transfected with wild-type porcine alpha2 delta cDNA. Six deletion mutants (B-G) that lack the delta polypeptide, together with varying amounts of the alpha2 component, failed to bind [3H]gabapentin. C-terminal deletion mutagenesis of the delta polypeptide identified a segment (residues 960-994) required for correct assembly of the [3H]gabapentin binding pocket. Mutant L, which lacks the putative membrane anchor in the delta sequence, was found in both membrane-associated and soluble secreted forms. The soluble form was not proteolytically cleaved into separate alpha2 and delta chains but still retained a high affinity (KD = 30.7 +/- 8.1 nM) for [3H]gabapentin. The production of a soluble alpha2delta mutant supports the single transmembrane model of the alpha2 delta subunit and is an important step toward the large-scale recombinant expression of the protein.  相似文献   

5.
The ryanodine receptor (RyR) of skeletal muscle contains two functional domains: a carboxyl-terminal hydrophobic domain that forms the putative conduction pore of the calcium release channel, and a large cytoplasmic domain that corresponds to the "foot structure." To understand the contribution of the foot structure to the function of the calcium release channel, we studied a RyR deletion mutant, delta(1641-2437)-RyR, in which a region that is rich in glutamate and aspartate residues (a.a. 1641-2437) was removed. The wild-type and delta(1641-2437)-RyR proteins were expressed in a Chinese hamster ovary (CHO) cell line, and functions of single calcium release channels were measured in the lipid bilayer membrane. The wild-type RyR forms functional calcium release channels with a linear current-voltage relationship similar to that of the native channel identified in the sarcoplasmic reticulum membrane of skeletal muscle, whereas the channels formed by delta(1641-2437)-RyR exhibit significant inward rectification, i.e., currents moving from cytoplasm into SR lumen were approximately 20% less than that in the opposite direction. As in to the wt-RyR channel, opening of the delta(1641-2437)-RyR channel has a bell-shaped dependence on the cytoplasmic calcium, but the calcium-dependent activation and inactivation processes of the delta(1641-2437)-RyR channel are shifted to higher calcium concentrations. Our data show that deletion of a.a. 1641-2437 from the foot region of the skeletal muscle RyR results in changes in both ion conduction and calcium-dependent regulation of the calcium release channel.  相似文献   

6.
MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.  相似文献   

7.
Escherichia coli heat-stable enterotoxin Ip (STIp) is an extracellular toxin consisting of 18 amino acid residues that is synthesized as a precursor of pre (amino acid residues 1 to 19), pro (amino acid residues 20 to 54), and mature (amino acid residues 55 to 72) regions. The precursor synthesized in the cytoplasm is translocated across the inner membrane by the general export pathway consisting of Sec proteins. The pre region functions as a leader peptide and is cleaved during translocation. However, it remains unknown how the resulting peptide (pro-mature peptide) translocates across the outer membrane. In this study, we investigated the structure of the STIp that passes through the outer membrane to determine how it translocates through the outer membrane. The results showed that the pro region is cleaved in the periplasmic space. The generated peptide becomes the mature form of STIp, which happens to have disulfide bonds, which then passes through the outer membrane. We also showed that STIp with a carboxy-terminal peptide consisting of 3 amino acid residues passes through the outer membrane, whereas STIp with a peptide composed of 37 residues does not. Amino acid analysis of mutant STIp purified from culture supernatant revealed that the peptide composed of 37 amino acid residues was cleaved into fragments of 5 amino acid residues. In addition, analyses of STIps with a mutation at the cysteine residue and the dsbA mutant strain revealed that the formation of an intramolecular disulfide bond within STIp is not absolutely required for the mature region of STIp to pass through the outer membrane.  相似文献   

8.
The Escherichia coli major outer membrane lipoprotein (Lpp) is released from the inner membrane into the periplasm as a complex with a carrier protein, LolA (p20), and is then specifically incorporated into the outer membrane. An outer membrane protein playing a critical role in Lpp incorporation was identified, and partial amino acid sequences of the protein, named LolB, were identical to those of HemM, which has been suggested to play a role in 5-aminolevulinic acid synthesis in the cytosol. In contrast to this suggested role, the deduced amino acid sequence of HemM implied that the gene encodes a novel outer membrane lipoprotein. Indeed, an antibody raised against highly purified LolB revealed its outer membrane localization, and inhibited in vitro Lpp incorporation into the outer membrane. Furthermore, LolB was found to be synthesized as a precursor with a signal sequence and then processed to a lipid-modified mature form. An E.coli strain possessing chromosomal hemM under the control of the lac promoter-operator required IPTG for growth, indicating that hemM (lolB) is an essential gene. Outer membrane prepared from LolB-depleted cells did not incorporate Lpp. When the Lpp-LolA complex was incubated with a water-soluble LolB derivative, Lpp was transferred from LolA to LolB. Based on these results, the outer membrane localization pathway for E.coli lipoprotein is discussed with respect to the functions of LolA and LolB.  相似文献   

9.
An Escherichia coli strain carrying either the secAcsR11 or delta secG::kan mutation is unable to grow at low temperature owing to cold-sensitive protein translocation but grows normally at 37 degree C. However, introduction of the two mutations into the same cells caused a severe defect in protein translocation and the cells were unable to grow at any temperature examined, indicating that secG is essential for the secAcsR11 mutant. The mutant SecA (csSecA) was found to possess a single amino acid substitution in the precursor-binding region and was defective in the interaction with the precursor protein. Furthermore, the membrane insertion of SecA and the membrane topology inversion of SecG, both of which took place upon the initiation of protein translocation, were significantly retarded even at 37 degree C, when csSecA was used instead of the wild-type SecA. The insertion of the wild-type SecA was also significantly defective when SecG-depleted membrane vesicles were used in place of SecG-containing ones. No insertion of csSecA occurred into SecG-depleted membrane vesicles. Examination of in vitro protein translocation at 37 degree C revealed that SecG is essential for csSecA-dependent protein translocation. We conclude that SecG and SecA undergo a coupled structure change, that is critical for efficient protein translocation.  相似文献   

10.
11.
The lipooligosaccharide (LOS) present in the outer membrane of Haemophilus ducreyi is likely a virulence factor for this sexually transmitted pathogen. An open reading frame in H. ducreyi 35000 was found to encode a predicted protein that had 87% identity with the protein product of the gmhA (isn) gene of Haemophilus influenzae. In H. influenzae type b, inactivation of the gmhA gene caused the synthesis of a significantly truncated LOS which possessed only lipid A and a single 2-keto-3-deoxyoctulosonic acid molecule (A. Preston, D. J. Maskell, A. Johnson, and E. R. Moxon, J. Bacteriol. 178:396-402, 1996). The H. ducreyi gmhA gene was able to complement a gmhA-deficient Escherichia coli strain, a result which confirmed the identity of this gene. When the gmhA gene of H. ducreyi was inactivated by insertion of a cat cartridge, the resultant H. ducreyi gmhA mutant, 35000.252, expressed a LOS that migrated much faster than wild-type LOS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the wild-type H. ducreyi strain and its isogenic gmhA mutant were used in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi, the gmhA mutant was found to be substantially less virulent than the wild-type parent strain. The H. ducreyi gmhA gene was amplified by PCR from the H. ducreyi chromosome and cloned into the pLS88 vector. When the H. ducreyi gmhA gene was present in trans in gmhA mutant 35000.252, expression of the gmhA gene product restored the virulence of this mutant to wild-type levels. These results indicate that the gmhA gene product of H. ducreyi is essential for the expression of wild-type LOS by this pathogen.  相似文献   

12.
13.
Hypophosphatasia is associated with a defect of the tissue-nonspecific alkaline phosphatase (TNSALP) gene. The onset and clinical severity are usually correlated in hypophosphatasia; patients with perinatal hypophosphatasia die approximately at the time of birth. In contrast, we describe a male neonatal patient with hypophosphatasia who had no respiratory problems and survived. He was compound heterozygous for the conversion of Phe to Leu at codon 310 (F310L) and the deletion of a nucleotide T at 1735 (delT1735), causing the frame shift with the result of the addition of 80 amino acids at the C-terminal of the protein. Because the C-terminal portion of TNSALP is known to be important for TNSALP to bind to the plasma membrane, the localization of wild-type and mutated TNSALP proteins was analyzed using green fluorescent protein chimeras. The expression vectors containing the complementary DNA of fusion proteins consisting of signal peptide, green fluorescent protein, and wild-type or mutated TNSALP, caused by delT1735 or F310L mutation, were introduced transiently or stably in Saos-2 cells. The delT1735 mutant failed to localize at the cell surface membrane, whereas the wild-type and the F310L mutants were located in the plasma membrane and cytoplasm. The assay for enzymatic activity of TNSALP revealed that the delT1735 mutant lost the activity and that the F310L mutant exhibited an enzymatic activity level that was 72% of the normal level. The F310L mutation was also detected in another neonatal patient with relatively mild (nonlethal) hypophosphatasia (reported in J Clin Endocrinol Metab, 81:4458-4461, 1996), suggesting that residual ALP activity of the F310L mutant contributes to the less severe phenotype. The patient is unique, with respect to a discrepancy between onset and clinical severity in hypophosphatasia.  相似文献   

14.
Expression of the proapoptotic protein Bax under the control of a GAL10 promoter in Saccharomyces cerevisiae resulted in galactose-inducible cell death. Immunofluorescence studies suggested that Bax is principally associated with mitochondria in yeast cells. Removal of the carboxyl-terminal transmembrane (TM) domain from Bax [creating Bax (deltaTM)] prevented targeting to mitochondrial and completely abolished cytotoxic function in yeast cells, suggesting that membrane targeting is crucial for Bax-mediated lethality. Fusing a TM domain from Mas70p, a yeast mitochondrial outer membrane protein, to Bax (deltaTM) restored targeting to mitochondria and cytotoxic function in yeast cells. Deletion of four well-conserved amino acids (IGDE) from the BH3 domain of Bax ablated its ability to homodimerize and completely abrogated lethality in yeast cells. In contrast, several Bax mutants which retained ability to homodimerize (deltaBH1, deltaBH2, and delta1-58) also retained at least partial lethal function in yeast cells. In coimmunoprecipitation experiments, expression of the wild-type Bax protein in Rat-1 fibroblasts and 293 epithelial cells induced apoptosis, whereas the Bax (deltaIGDE) mutant failed to induce apoptosis and did not associate with endogenous wild-type Bax protein. In contrast to yeast cells, Bax (deltaTM) protein retained cytotoxic function in Rat-1 and 293 cells, was targeted largely to mitochondria, and dimerized with endogenous Bax in mammalian cells. Thus, the dimerization-mediating BH3 domain and targeting to mitochondrial membranes appear to be essential for the cytotoxic function of Bax in both yeast and mammalian cells.  相似文献   

15.
The growth suppressive properties of the tumor suppressor protein p53 are activated upon DNA damage. The activation of p53 is reflected in increased p53 levels which are, at least in part, the result of an extended half-life of the protein. Although this suggests that stabilization of p53 is an intrinsic feature of p53 activation, the mechanisms involved in p53 degradation and stabilization are poorly understood. Here we report on the identification of an internal deletion mutant of wild-type p53, termed delta62-96, which can be stably expressed in various cell lines. This deletion mutant has a turnover rate similar to wild-type p53 and its stability is upregulated by treatment with UV light. In cell lines that express endogenous mutant or no p53, however, delta62-96 appears to be stable, strongly indicating that these cell lines have lost the ability to degrade p53. Further characterization of delta62-96 by mutational analyses defines sequence and structural requirements for p53 degradation and indicates that none of the known p53 phosphorylation sites is essential with respect to p53 stability regulation upon UV-irradiation.  相似文献   

16.
The signals for targeting and assembly of porin, a protein of the mitochondrial outer membrane, have not been clearly defined. Targeting information has been hypothesized to be contained in the N-terminus, which may form an amphipathic alpha-helix, and in the C-terminal portion of the protein. Here, the role of the extreme N- and C-termini of porin from Neurospora crassa in its import into the mitochondrial outer membrane was investigated. Deletion mutants were constructed which lacked the N-terminal 12 or 20 residues or the C-terminal 15 residues. The porins truncated at their N-termini were imported in a receptor-dependent manner into the outer membrane of isolated mitochondria. When integrated into the outer membrane, these preproteins displayed an increased sensitivity to protease as compared to wild-type porin. In contrast, mutant porin truncated at its C-terminus did not acquire protease resistance upon incubation with mitochondria. Thus, unlike most other mitochondrial preproteins, porin appears to contain important targeting and/or assembly information at its C-terminus, rather than at the N-terminus.  相似文献   

17.
Vaccinia extracellular enveloped virus (EEV) is important for cell-to-cell and long-range virus spread both in vitro and in vivo. Six genes have been identified that encode protein constituents of the EEV outer membrane, and some of these proteins are critical for EEV formation. The B5R gene encodes an EEV-specific type I membrane protein, and deletion of this gene markedly decreases EEV formation and results in a small plaque phenotype. Data suggest that the transmembrane domain, cytoplasmic tail, or both contain the EEV localization signals that are required for targeting of the B5R protein to EEV and for EEV formation. Here, we report the construction of mutant vaccinia viruses in which the wild-type B5R gene was replaced with a mutated one that encodes a protein with the putative cytoplasmic tail deleted. The mutated protein showed normal intracellular distribution and was properly incorporated into EEV. Vaccinia viruses expressing the B5R protein lacking the cytoplasmic tail formed plaques that were similar in type and size to those formed by wild-type viruses and produced equivalent amounts of infectious EEV. These results indicate that the B5R cytoplasmic tail is not necessary for EEV formation and points to the transmembrane domain as the major determinant for targeting the B5R protein to the outer membrane of EEV and for supporting EEV formation.  相似文献   

18.
19.
A mutant of human gamma-glutamyl transpeptidase (EC 2.3.2.2, a membrane-bound enzyme of importance in glutathione metabolism) that differs from the wild type by deletion of the putative signal peptide/anchor domain (amino acid residues 1-27) was expressed in insect cells using a baculovirus system. In contrast to the wild-type enzyme--which, as expected, was mainly cell-associated--the mutant enzyme was secreted into the medium. The mutant and wild-type enzymes were purified and found to exhibit virtually identical catalytic properties. The mutant enzyme was glycosylated and processed into two subunits, as found for the wild-type enzyme. Brefeldin A inhibited secretion of the mutant enzyme and led to its accumulation in cells. The findings indicate that gamma-glutamyl transpeptidase can be targeted to the endoplasmic reticulum in a manner that does not involve function of an amino-terminal "signal/anchor" domain and that this domain is involved primarily in a membrane anchoring function. Another region of the enzyme may function as a signal domain.  相似文献   

20.
Intestinal fatty acid-binding protein (I-FABP) is a cytosolic 15.1-kDa protein that appears to function in the intracellular transport and metabolic trafficking of fatty acids. It binds a single molecule of long-chain fatty acid in an enclosed cavity surrounded by two five-stranded antiparallel beta-sheets and a helix-turn-helix domain. To investigate the role of the helical domain, we engineered a variant of I-FABP by deleting 17 contiguous residues and inserting a Ser-Gly linker (Kim K et al., 1996, Biochemistry 35:7553-7558). This variant, termed delta17-SG, was remarkably stable, exhibited a high beta-sheet content and was able to bind fatty acids with some features characteristic of the wild-type protein. In the present study, we determined the structure of the delta17-SG/palmitate complex at atomic resolution using triple-resonance 3D NMR methods. Sequence-specific 1H, 13C, and 15N resonance assignments were established at pH 7.2 and 25 degrees C and used to define the consensus 1H/13C chemical shift-derived secondary structure. Subsequently, an iterative protocol was used to identify 2,544 NOE-derived interproton distance restraints and to calculate its tertiary structure using a unique distance geometry/simulated annealing algorithm. In spite of the sizable deletion, the delta17-SG structure exhibits a backbone conformation that is nearly superimposable with the beta-sheet domain of the wild-type protein. The selective deletion of the alpha-helical domain creates a very large opening that connects the interior ligand-binding cavity with exterior solvent. Unlike wild-type I-FABP, fatty acid dissociation from delta17-SG is structurally and kinetically unimpeded, and a protein conformational transition is not required. The delta17-SG variant of I-FABP is the only wild-type or engineered member of the intracellular lipid-binding protein family whose structure lacks alpha-helices. Thus, delta17-SG I-FABP constitutes a unique model system for investigating the role of the helical domain in ligand-protein recognition, protein stability and folding, lipid transfer mechanisms, and cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号