首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the O(n) recursive algorithm for forward dynamics of closed loop kinematic chains adapted to parallel computations on a cluster of workstations. The Newton–Euler equations of motion are formulated in terms of relative coordinates. Closed loop kinematic chains are transformed into open loop chains by cut joint technique. Cut joint constraint and Lagrange multipliers are introduced to complete the equations of motion. Constraint stabilization is performed using the Baumgarte stabilization technique with application to multibody systems with large number of degrees of freedom. Numerical simulations are carried out to study the influence of the degrees of freedom of the multibody system on computational efficiency of the algorithm using the Message Passing Interface (MPI). We also consider the ways of minimization of communication overhead which has significant impact on efficiency in case of cluster computing.  相似文献   

2.
The kinematic representations of general open-loop chains in many robotic applications are based on the Denavit–Hartenberg (DH) notation. However, when the DH representation is used for kinematic modeling, the relative joint constraints cannot be described explicitly using the common formulation methods. In this paper, we propose a new formulation of solving a system of differential-algebraic equations (DAEs) where the method of Lagrange multipliers is incorporated into the optimization problem for optimal motion planning of redundant manipulators. In particular, a set of fictitious joints is modeled to solve for the joint constraint forces and moments, as well as the optimal dynamic motion and the required actuator torques of redundant manipulators described in DH representation. The proposed method is formulated within the framework of our earlier study on the generation of load-effective optimal dynamic motions of redundant manipulators that guarantee successful execution of given tasks in which the Lagrangian dynamics for general external loads are incorporated. Some example tasks of a simple planar manipulator and a high-degree-of-freedom digital human model are illustrated, and the results show accurate calculation of joint constraint loads without altering the original planned motion. The proposed optimization formulation satisfies the equivalent DAEs.  相似文献   

3.
Numerical simulation of closed loop multibody systems is associated with numerical solution of equations of motion which are, in general, in the form of DAE’s index-3 systems. For assuring continuous simulation, one should overcome some difficulties such as stabilization of the constraint equations, singular configuration of the system. In this paper, the system equations of motion with the Lagrange multipliers is rewritten by introducing generalized reaction forces. The combination with the condition of ideality of constraints leads to the system of equations which can be solved by numerical techniques smoothly, even over singular positions. Based on the new criterion of ideality of constraints, which relates generalized reaction forces and the null space matrix of Jacobian matrix, it is possible also to remove reaction forces and use only the reduced system of equations with null space matrix for passing singular positions. In order to prevent the constraint equations from the accumulated errors of integral time, the method of position and velocity projection has been exploited. Some numerical experiments are carried out to verify the proposed approach.  相似文献   

4.
This article uses the piecewise model and Kane’s method to present a procedure for studying impulsive motion of multibody systems. Impulsive motion occurs when the system is subject to either impulsive forces or impulsive constraints, or when subjected to both simultaneously. The Appellian classification of impulsive constraints and the corresponding equations of impulsive motion of the multibody system are discussed. The governing equations are derived based upon multibody formulation procedures developed by Huston. Constraint impulses associated with finite and impulsive constraints are incorporated into impact dynamical equations through the impulsive Lagrange multipliers. The kinetic energy change of the scleronomic multibody system due to the impact is derived. Newton’s impact law is treated as an impulsive constraint equation to study single-point frictionless collision between two multibody systems. Several examples are used to demonstrate and validate the procedure.  相似文献   

5.
Constraints work in the simplest way among a variety of methods of modeling the mechanical behaviors on the interface between bodies. The constraints within a persistent point contact usually fall into the following three categories: geometry-dependent constraints due to non-penetration limitation between the two rigid bodies; velocity- or force-dependent constraints due to the vanishing of tangential velocity or sliding friction engaged in tangential interaction. Though those constraints may be intuitively obtained for some simple problems, they are essentially associated with the evolution of location parameters denoting the temporal position of the contact point. Focusing on a multibody system subject to a persistent point contact, we propose a uniform and programmable procedure to formulate the constraint equations. Kinematic analysis along the procedure can clearly expose the dependence of the constraint equations on the location parameters, unveil the reason why the velocity-dependent constraints may become nonholonomic, and exhibit the fulfillment of the Appell–Chetaev’s rule naturally. Furthermore, we employ d’Alembert–Lagrangian principle to yield the dynamical equations of the system via the method of Lagrange’s multipliers. The dynamical equations so obtained are then compared with those derived from a quite different method that characterizes the contact interplay as a pair of contact force vectors. Accordingly, the correlations between the Lagrange multipliers and the components of the real contact force can be clarified. The clarification enables us to correctly embed the force-dependent constraints into the dynamical equations. A classical example of a thin disk contacting a horizontal rough surface is provided to demonstrate the validation of the proposed theory and method.  相似文献   

6.
An extension to the divide-and-conquer algorithm (DCA) is presented in this paper to model constrained multibody systems. The constraints of interest are those applied to the system due to the inverse dynamics or control laws rather than the kinematically closed loops which have been studied in the literature. These imposed constraints are often expressed in terms of the generalized coordinates and speeds. A set of unknown generalized constraint forces must be considered in the equations of motion to enforce these algebraic constraints. In this paper dynamics of this class of multibody constrained systems is formulated using a Generalized-DCA. In this scheme, introducing dynamically equivalent forcing systems, each generalized constraint force is replaced by its dynamically equivalent spatial constraint force applied from the appropriate parent body to the associated child body at the connecting joint without violating the dynamics of the original system. The handle equations of motion are then formulated considering these dynamically equivalent spatial constraint forces. These equations in the GDCA scheme are used in the assembly and disassembly processes to solve for the states of the system, as well as the generalized constraint forces and/or Lagrange multipliers.  相似文献   

7.
The use of multibody formulations based on Cartesian or naturalcoordinates lead to sets of differential-algebraic equations that haveto be solved. The difficulty in providing compatible initial positionsand velocities for a general spatial multibody model and the finiteprecision of such data result in initial errors that must be correctedduring the forward dynamic solution of the system equations of motion.As the position and velocity constraint equations are not explicitlyinvolved in the solution procedure, any integration error leads to theviolation of these equations in the long run. Another problem that isvery often impossible to avoid is the presence of redundant constraints.Even with no initial redundancy it is possible for some systems toachieve singular configurations in which kinematic constraints becometemporarily redundant. In this work several procedures to stabilize thesolution of the equations of motion and to handle redundant constraintsare revisited. The Baumgarte stabilization, augmented Lagrangian andcoordinate partitioning methods are discussed in terms of theirefficiency and computational costs. The LU factorization with fullpivoting of the Jacobian matrix directs the choice of the set ofindependent coordinates, required by the coordinate partitioning method.Even when no particular stabilization method is used, a Newton–Raphsoniterative procedure is still required in the initial time step tocorrect the initial positions and velocities, thus requiring theselection of the independent coordinates. However, this initialselection does not guarantee that during the motion of the system otherconstraints do not become redundant. Two procedures based on the singlevalue decomposition and Gram–Schmidt orthogonalization are revisited forthe purpose. The advantages and drawbacks of the different procedures,used separately or in conjunction with each other and theircomputational costs are finally discussed.  相似文献   

8.
针对多体系统动力学微分-代数方程求解问题,研究基于Lie群表达的约束稳定方法.首先引入新的Lagrange乘子,结合位移约束、速度级约束和加速度级约束方程,构造了新的Lie群微分-代数方程.然后使用向后差商隐式方法和CG(Crouch-Grossman)方法,对微分–代数方程进行离散求解,得到精确度较高的动力学仿真结果.该方法在精确保持各级约束方程的同时,保持旋转矩阵的正交性,并且使系统总能量误差较小.  相似文献   

9.
A method for integrating equations of motion of constrained multibodysystems with no constraint violation is presented. A mathematical model,shaped as a differential-algebraic system of index 1, is transformedinto a system of ordinary differential equations using the null-spaceprojection method. Equations of motion are set in a non-minimal form.During integration, violations of constraints are corrected by solvingconstraint equations at the position and velocity level, utilising themetric of the system's configuration space, and projective criterion to thecoordinate partitioning method. The method is applied to dynamicsimulation of 3D constrained biomechanical system. The simulation resultsare evaluated by comparing them to the values of characteristicparameters obtained by kinematic analysis of analyzed motion based onmeasured kinematic data.  相似文献   

10.
Direct differentiation method of sensitivity analysis is developed for frictional contact problems. As a result of the augmented Lagrangian treatment of contact constraints, the direct problem is solved simultaneously for the displacements and Lagrange multipliers using the Newton method. The main purpose of the paper is to show that this formulation of the augmented Lagrangian method is particularly suitable for sensitivity analysis because the direct differentiation method leads to a non-iterative exact sensitivity problem to be solved at each time increment. The approach is applied to a general class of three-dimensional frictional contact problems, and numerical examples are provided involving large deformations, multibody contact interactions, and contact smoothing techniques.  相似文献   

11.
In this work, a reduced-order forward dynamics of multiclosed-loop systems is proposed by exploiting the associated inherent kinematic constraints at acceleration level. First, a closed-loop system is divided into an equivalent open architecture consisting of several serial and tree-type subsystems by introducing cuts at appropriate joints. The resulting cut joints are replaced by appropriate constraint forces also referred to as Lagrange multipliers. Next, for each subsystem, the governing equations of motion are derived in terms of the Lagrange multipliers, which are based on the Newton–Euler formulation coupled with the concept of Decoupled Natural Orthogonal Complement (DeNOC) matrices, introduced elsewhere. In the proposed forward dynamics formulation, Lagrange multipliers are calculated sequentially at the subsystem level, and later treated as external forces to the resulting serial or tree-type systems of the original closed-loop system, for the recursive computation of joint accelerations. Note that such subsystem-level treatment allows one to use already existing algorithms for serial and tree-type systems. Hence, one can perform the dynamic analyses relatively quickly without rewriting the complete model of the closed-loop system at hand. The proposed methodology is in contrast to the conventional approaches, where the Lagrange multipliers are calculated together at the system level or simultaneously along with the joint accelerations, both of which incur higher order computational complexities, and thereby a greater number of arithmetic operations. Due to the smaller size of matrices involved in evaluating Lagrange multipliers in the proposed methodology, and the recursive computation of the joint accelerations, the overall numerical performances like computational efficiency, etc., are likely to improve. The proposed reduced-order forward dynamics formulation is illustrated with two multiclosed-loop systems, namely, a 7-bar carpet scrapping mechanism and a 3-RRR parallel manipulator.  相似文献   

12.
Real-time simulation is an essential component of hardware- and operator-in-the-loop applications, such as driving simulators, and can greatly facilitate the design, implementation, and testing of dynamic controllers. Such applications may involve multibody systems containing closed kinematic chains, which are most readily modeled using a set of redundant generalized coordinates. The governing dynamic equations for such systems are differential-algebraic in nature—that is, they consist of a set of ordinary differential equations coupled with a set of nonlinear algebraic constraint equations—and can be difficult to solve in real time. In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing a recursively solvable system for calculating the dependent generalized coordinates given values of the independent coordinates. The proposed approach can be used to generate computationally efficient simulation code that avoids the use of iteration, which makes it particularly suitable for real-time applications.  相似文献   

13.
Nonholonomic constraint equations that are nonlinear in velocities are incorporated with Kane's dynamical equations by utilizing the acceleration form of constraints, resulting in Kane's nonminimal equations of motion, i.e. the equations that involve the full set of generalized accelerations. Together with the kinematical differential equations, these equations form a state-space model that is full-order, separated in the derivatives of the states, and involves no Lagrange multipliers. The method is illustrated by using it to obtain nonminimal equations of motion for the classical Appell–Hamel problem when the constraints are modeled as nonlinear in the velocities. It is shown that this fictitious nonlinearity has a predominant effect on the numerical stability of the dynamical equations, and hence it is possible to use it for improving the accuracy of simulations. Another issue is the dynamics of constraint violations caused by integration errors due to enforcing a differentiated form of the constraint equations. To solve this problem, the acceleration form of the constraint equations is augmented with constraint stabilization terms before using it with the dynamical equations. The procedure is illustrated by stabilizing the constraint equations for a holonomically constrained particle in the gravitational field.  相似文献   

14.
This paper presents a systematic approach to develop a generalized symbolic/numerical dynamic algorithm for modeling and simulation of multibody systems with branches and wheels. The proposed dynamic algorithm includes the direct kinematic and inverse dynamic models of the wheeled systems with prismatic/revolute as well as actuated/passive degrees of freedom. Using the geometric configuration of the system through modified Denavit–Hartenberg convention, symbolic equations in general algorithmic form are developed for kinematic constraints associated with the wheel–ground contacts. The Newton–Euler equations are used to develop an algorithm for the inverse dynamic model of the multibody system. The complete algorithm is then used to solve the kinematics and dynamics of the system, and computes: (i) the kinematics of the external/internal passive degrees of freedom of the system, (ii) the Lagrange multipliers associated with the wheel–ground contacts, and (iii) the driving forces/torques of the actuated degrees of freedom. Some examples are solved with the help of the proposed algorithm, using MATLAB, to illustrate its implementation on different wheeled systems. These examples include a differential wheeled robot, a snake-like wheeled system, and a bicycle.  相似文献   

15.
The objective of this article is to present an efficient extension ofRosenthal's order-n algorithm to multibody systems containing closedloops. The equations of motion are created by using relative coordinatesand partial velocity theory. Closed topological loops are handled by cutjoint technique. The set of constraint equations of cut joints isadjoined to the system's equation of motion by using Lagrangemultipliers. This results in the equation of motion as adifferential-algebraic equation (DAE) rather than an ordinarydifferential equation. This DAE is then solved by applying the extendedRosenthal's order-n algorithm proposed in this article. While solvingDAE, violation of the kinematic constraint equations of cut joints iscorrected by coordinate projection method. Some numerical simulationsare carried out to demonstrate efficiency of the proposed method.  相似文献   

16.
Multibody systems are often modeled as constrained systems, and theconstraint equations are involved in the dynamics formulations. To makethe arising governing equations more tractable, the constraint equationsare differentiated with respect to time, and this results in unstablenumerical solutions which may violate the lower-order constraintequations. In this paper we develop a methodology for numerically exactelimination of the constraint violations, based on appropriatecorrections of the state variables (after each integration step) withoutany modification in the motion equations. While the elimination ofviolation of position constraints may require few iterations, theviolation of velocity constraints is removed in one step. The totalenergy of the system is sometimes treated as another measure of theintegration process inaccuracy. An improved scheme for one-stepelimination of the energy constraint violation is proposed as well. Theconclusion of this paper is, however, that the energy conservation is ofminor importance as concerns the improvement of accuracy of numericalsimulations. Some test calculations are reported.  相似文献   

17.
The determination of particular reaction forces in the analysis of redundantly constrained multibody systems requires the consideration of the stiffness distribution in the system. This can be achieved by modeling the components of the mechanical system as flexible bodies. An alternative to this, which we will discuss in this paper, is the use of penalty factors already present in augmented Lagrangian formulations as a way of introducing the structural properties of the physical system into the model. Natural coordinates and the kinematic constraints required to ensure rigid body behavior are particularly convenient for this. In this paper, scaled penalty factors in an index-3 augmented Lagrangian formulation are employed, together with modeling in natural coordinates, to represent the structural properties of redundantly constrained multibody systems. Forward dynamic simulations for two examples are used to illustrate the material. Results showed that scaled penalty factors can be used as a simple and efficient way to accurately determine the constraint forces in the presence of redundant constraints.  相似文献   

18.
When modeled with ideal joints, many vehicle suspensions contain closed kinematic chains, or kinematic loops, and are most conveniently modeled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques. In this work, the equations of motion for a double-wishbone suspension are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. Symbolic computation is then used to triangularize a subset of the kinematic constraint equations, thereby producing a recursively solvable system for calculating a subset of the dependent generalized coordinates. Thus, the kinematic equations are reduced to a block-triangular form, which results in a more computationally efficient solution strategy than that obtained by iterating over the original constraint equations. The efficiency of this block-triangular kinematic solution is exploited in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator.  相似文献   

19.
多体系统传递矩阵法不须进行违约修正的验证   总被引:1,自引:0,他引:1  
对一含有完整约束的多体系统在平面、空间中的运动规律进行了计算机仿真研究,采用通常动力学方法,以卡尔丹角作为位置角建立和求解动力学方程,并对进行和不进行违约修正的仿真结果进行了比较,然后采用多体系统离散时间传递矩阵法进行了计算机仿真,仿真结果表明多体系统传递矩阵法在不进行违约修正的情况下,仍能保证完整约束不被违反与通常动力学方法相比,多体系统传递矩阵法不需进行违约修正。  相似文献   

20.
This paper presents a new method to estimate both musculo-tendon forces and detailed joint reactions during gait, using an original 3D lower limb musculo-skeletal model with 5 degrees of freedom: spherical joint at the hip and parallel mechanisms at both knee and ankle. This can be realized by employing a typical set of natural coordinates into a three-steps process. First, the kinematic constraints associated with the kinematic models are applied through a global optimization method on the marker-based kinematics. Consistent time derivatives of the positions are computed by projecting the velocities and accelerations in the null space of the Jacobian matrix. Then, a Lagrangian formulation of the equations of motion is proposed, introducing Lagrange multipliers and allowing a straight access to the musculo-tendon forces. Thanks to a parameter reduction procedure, the Lagrange multipliers are cancelled and the musculo-tendon forces can be computed directly, using a static optimization algorithm with a typical cost function. Finally, the equations of motion are rewritten with the Lagrange multipliers to compute detailed joint reactions (since they represent directly joint contact and ligament forces). Results show that the estimated musculo-tendon forces are consistent with measured EMG signals. Moreover, the use of “anatomically” consistent kinematic models allows computing total joint reaction at hip joint and detailed joint reactions at both knee and ankle joints that are temporally consistent with the forces measured on the subject (i.e., knee joint contact forces) and the forces published in the literature (i.e., hip joint contact forces). Next step will be to optimize simultaneously musculo-tendon forces and joint reactions to investigate and understand the interactions acting into the musculo-skeletal system during gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号