首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper introduces a method that can generate continuous human walking motion automatically on an arbitrary path in a three‐dimensional (3D) modelled scene. The method is based on a physical approach that solves the boundary value problem. In the motion generation stage, natural‐looking walking motion, which includes plane walking, walking upstairs and downstairs and walking on a curved path, is created by applying dynamics and kinematics. The human body is approximated as a simple rigid skeleton model, and dynamic motion is created based on the ground reaction force of the human foot. To adapt to the 3D environment, the 3D walking path is divided into steps which are tagged with the parameters needed for motion generation, and step‐by‐step motion is connected end‐to‐end. Additional features include fast calculation and a reduced need for user control. The proposed method can produce interesting human motion and can create realistic computer animation scenes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
针对双足机器人动态步行生成关节运动轨迹复杂问题,提出了一种简单直观的实时步态生成方案。建立了平面五杆双足机器人动力学模型,通过模仿人类步行主要运动特征并根据双足机器人动态步行双腿姿态变化的要求,将动态步行复杂任务分解为顺序执行的四个过程,在关节空间相对坐标系下设计了躯干运动模式、摆动腿和支撑腿动作及步行速度调整模式,结合当前步行控制结果反馈实时产生稳定的关节运动轨迹。仿真实验验证了该方法的有效性,简单易实现。  相似文献   

3.
《Advanced Robotics》2013,27(4):343-356
This paper deals with the design of the foot trajectory for a quadruped walking machine. Such walking machines should be capable of both uneven terrain walking and high-speed flat surface walking. The static walking method was used for uneven terrain walking and the dynamic walking method was used for plane walking. In the case of dynamic walking, the relative speed between the foot and the ground causes instability in the balance of the body. A foot trajectory is designed based on two points: the kinematics of foot motion and the relationship between joint motion and joint driving torque. A method for reducing the impact force upon initial contact with a floor by designing a periodic foot trajectory based on the wave motion of a cam is discussed. In this method, vertical and horizontal motions of the foot trajectory were generated independently using cycloidic motion. We named this trajectory the composite cycloid foot trajectory. We further developed a modified cycloidic foot trajectory by smoothing the joint angular acceleration.  相似文献   

4.
The objective of this study is to formulate, simulate and study the backward walking motion of a full-body skeletal digital human model using an optimization approach. Predictive dynamics is used to simulate the task in which joint angle profiles are treated as primary unknowns in the formulation. The joint torques are treated as dependent variables that are evaluated directly from the equations of motion. For the performance measure, the normalized dynamic effort represented by the integral of the squares of all the normalized joint torques is minimized subject to the associated physical constraints. Backward walking at different speeds is simulated and analyzed. The backward walking is validated with motion capture data and the available data in the literature. The results of the backward walking motion are compared to those of the forward walking motion in order to study the differences between the two walking patterns. It is seen that the joint torque profiles for hip and knee of backward walk are quite similar to those of forward walk with reverse sequence, but with different time duration of flexion and extension activations. These findings can impact many fields, such as improvement of human performance, rehabilitation from injuries, and others.  相似文献   

5.
Animating human locomotion with inverse dynamics   总被引:3,自引:0,他引:3  
Because the major force components (the internal muscular forces and torques) are not known a priori over time, you cannot use forward dynamics to predict how the human body will walk. The alternative to the apparently intractable problem of specifying the joint torque patterns in advance is to use inverse dynamics to analyze the torques and forces required for the given motion. Such an analysis can show, for example, that the motion induces excessive torque, that the system is out of balance at a certain point, or that the step length is too great. We present a method of using an inverse dynamics computation to dynamically balance the resulting walking motion and to maintain the joint torques within a moderate range imposed by human strength limits. This method corrects or predicts a motion as indicated by the inverse dynamics analysis. Dynamic correctness is a sufficient condition for realistic motion of nonliving objects. In animating a self-actuated system, however, visual realism is another important, separate criterion for determining the success of a technique. Dynamic correctness is not a sufficient condition for this visual realism. An animation of dynamically balanced walking that is also comfortable in the sense of avoiding strength violations can still look quite different from normal human walking. A visually realistic and dynamically sound animation of human locomotion is obtained using an effective combination of kinematic and dynamic techniques  相似文献   

6.
This paper introduced a new walking pattern generation method for biped robots without active roll joint at the ankle and described a simple walking pattern generation method for the robot without using ZMP (Zero Moment Point) information directly. Firstly, the paper introduced a hydraulic actuated biped robot with eight degrees of freedom, which had payload capacity. Secondly, the paper provided a dynamic balance control method in the lateral plane. Not as the inverted pendulum model, this control method was also available for biped robot without active roll joint at the ankle. Thirdly, in order to decrease the vibration, the paper tried to keep the robot walking with an approximate constant speed in the frontal direction. Finally, weight loading experiments in the MD.DAMS simulation environment and physical prototype empty load experiments were used to verify the effectiveness of the proposed walking pattern methods.  相似文献   

7.
针对目前仿人机器人动态步行在样机上实现较少的情况,将多项式插值方法运用于机器人踝关节轨迹规划,结合已知髋关节运动轨迹,利用几何约束的方法求取膝关节运动轨迹,得到完整步态周期内各关节运动规律,最终实现NAO机器人的动态步行。实验结果证实了基于多项式插值的几何约束规划方法是可行且有效的。  相似文献   

8.
Passive dynamic walking is a promising idea for the development of simple and efficient two-legged walking robots. One of the difficulties with this concept is the addition of a stable upper body; on the one hand, a passive swing leg motion must be possible, whereas on the other hand, the upper body (an inverted pendulum) must be stabilized via the stance leg. This paper presents a solution to the problem in the form of a bisecting hip mechanism. The mechanism is studied with a simulation model and a prototype based on the concept of passive dynamic walking. The successful walking results of the prototype show that the bisecting hip mechanism forms a powerful ingredient for stable, simple, and efficient bipeds  相似文献   

9.
《Advanced Robotics》2013,27(2):107-124
This paper discusses the design of a quadruped walking vehicle for walking dynamically at high speed and climbing ordinary stairs (30-40°). To realize these requests, new mechanisms are introduced, which are (1) a prismatic joint leg that does not interfere with the steps of a staircase and which performs a cylindrical coordinate motion with good energy efficiency, (2) an articulated body structure having a node that copes with a steep staircase, (3) a dual mode transmission system which can swing a leg with high speed and can generate a large supporting force, and (4) a non-linear type foot force sensor having a wide dynamic range. The effectiveness of these considerations is verified by walking experiments using the trial-manufactured TITAN VI.  相似文献   

10.
从仿生学角度分析了人体的步行运动规律,提出了一种基于人体运动规律的仿人机器人步态参数设定方法.首先对人体步行运动数据进行捕捉并分析,得出人体各步态参数间的函数关系,以人体步行相似性作为评价指标,提出仿人机器人步态参数的设定方法.其次,通过分析人体在步行过程中的补偿支撑脚偏航力矩的基本原理,提出了基于双臂及腰关节协调运动的仿人机器人偏航力矩补偿算法,以提高仿人机器人行走的稳定性.最后通过仿真及实验验证了所提出的步态规划方法的正确性及有效性.  相似文献   

11.
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.  相似文献   

12.
《Advanced Robotics》2013,27(6):707-736
This paper describes a novel control algorithm for dynamic walking of biped humanoid robots. For the test platform, we developed KHR-2 (KAIST Humanoid Robot-2) according to our design philosophy. KHR-2 has many sensory devices analogous to human sensory organs which are particularly useful for biped walking control. First, for the biped walking motion, the motion control architecture is built and then an appropriate standard walking pattern is designed for the humanoid robots by observing the human walking process. Second, we define walking stages by dividing the walking cycle according to the characteristics of motions. Third, as a walking control strategy, three kinds of control schemes are established. The first scheme is a walking pattern control that modifies the walking pattern periodically based on the sensory information during each walking cycle. The second scheme is a real-time balance control using the sensory feedback. The third scheme is a predicted motion control based on a fast decision from the previous experimental data. In each control scheme, we design online controllers that are capable of maintaining the walking stability with the control objective by using force/torque sensors and an inertial sensor. Finally, we plan the application schedule of online controllers during a walking cycle according to the walking stages, accomplish the walking control algorithm and prove its effectiveness through experiments with KHR-2.  相似文献   

13.
《Advanced Robotics》2013,27(5):535-561
A number of studies have measured kinematics, dynamics and oxygen uptake while a person walks on a treadmill. In particular, during walking on a split-belt treadmill, in which the left and right belts have different speeds, remarkable differences in kinematics are observed between normal subjects and subjects with cerebellar disease. In order to construct a gait adaptation model of such human split-belt treadmill walking, we proposed a simple control model and developed a new two-dimensional biped robot walk on a split-belt treadmill. We combined the conventional limit-cycle-based control consisting of joint PD control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. The data obtained in experiments on the robot (normal subject model and cerebellum disease subject model) have highly similar ratios and patterns to data obtained in experiments on normal subjects and subjects with cerebellar disease carried out by Bastian et al. We also showed that the P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in split-belt walking and that P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed a gait adaptation model for human split-belt treadmill walking, and confirmed the validity of our hypotheses and the proposed model using the biped robot.  相似文献   

14.
《Advanced Robotics》2013,27(5):483-501
Animals, including human beings, can travel in a variety of environments adaptively. Legged locomotion makes this possible. However, legged locomotion is temporarily unstable and finding out the principle of walking is an important matter for optimum locomotion strategy or engineering applications. As one of the challenges, passive dynamic walking has been studied on this. Passive dynamic walking is a walking phenomenon in which a biped walking robot with no actuator walks down a gentle slope. The gait is very smooth (like a human) and much research has been conducted on this. Passive dynamic walking is mainly about bipedalism. Considering that there are more quadruped animals than bipeds and a four-legged robot is easier to control than a two-legged robot, quadrupedal passive dynamic walking must exist. Based on the above, we studied saggital plane quadrupedal passive dynamic walking simulation. However, it was not enough to attribute the result to the existence of quadrupedal passive dynamic walking. In this research, quadrupedal passive dynamic walking is experimentally demonstrated by the four-legged walking robot 'Quartet 4'. Furthermore, changing the type of body joint, slope angle, leg length and variety of gaits (characteristics in four-legged animals) was observed passively. Experimental data could not have enough walking time and could not change parameters continuously. Then, each gait was analyzed quantitatively by the experiment and three-dimensional simulation.  相似文献   

15.
针对偏瘫患者的个体差异及病况差异,提出了一种理疗师交互下的下肢康复训练机器人步态规划方法,在理疗师-减重悬吊式康复训练机器人-患者三者共存的复杂环境中,理疗师穿戴主控外骨骼直接行走实现步态时空参数规划,并融入理疗师的医学经验及对患者的评估.首先,基于旋量理论建立运动学模型,实现理疗师空间与机器人空间的运动映射;然后,统一规划机器人关节运动轨迹、减重机构重心调整轨迹及跑步机步速.最后,通过理疗师步态参数的实时采集、运动映射实验及机器人轨迹跟踪实验,验证了步态时空规划方法的有效性.结果表明,髋、膝关节规划角度在人体关节活动范围内,速度变化平稳,关节轨迹规划和重心调整规划均符合人体行走的生理特性.理疗师的参与实现了渐进康复训练中的个性化步态规划.  相似文献   

16.

This study proposes the design of an exoskeleton featuring minimized energy consumption during stand-to-sit and sit-to-stand (STS) motion and walking while carrying a load through the utilization of elastic and dissipative elements. In order to determine which phase and joint can utilize elastic and dissipative elements, we analyzed a human’s walk and STS motions. With this human motion data, we propose an elastic element for hip adduction and abduction (Ad/Ab), series dissipative actuation (SDA) using a semi-active hydraulic system for hip flexion and extension (Fl/Ex) and parallel elastic and series dissipative actuation (PESDA) for the knee Fl/Ex, which is combined with the SDA and the parallel elastic element. The effect of the developed exoskeleton (EXO) with a hip Ad/Ab spring, hip SDA and knee PESDA was evaluated by measuring the user’s ground reaction force (GRF). When wearing the EXO with a hip Ad/Ab spring, hip SDA and knee PESDA, the subject’s GRF was smaller as compared to when the subject was not wearing the EXO while walking and performing the STS motion under a 20-kg load condition, except during the heel strike of the walk motion.

  相似文献   

17.
18.
基于逆运动学和动力学的虚拟人行走仿真   总被引:1,自引:1,他引:0  
在计算机上模拟真实人行走是计算机仿真的一个基本问题。人体行走是一种伴随着碰撞、摩擦和滑动的复杂的系统运动,为了实现模拟的逼真性,需要着重在运动控制上进行研究。首先对人体行走进行分析并建立了简单的人体模型,然后详细给出行走过程中关节点位置的数学描述,最后采用逆运动学求解雅可比矩阵的方法并结合动力学知识,运用VC++.NET和OpenGL为编程工具以骨架模型实现了虚拟人行走。  相似文献   

19.
Legged mechanisms can walk and run but sometimes encounter a risk of falling. In this article, a general numerical framework of balance criteria for a single-support legged mechanism is proposed and demonstrated. Explicit forms of necessary and sufficient conditions for balancing are identified and the balanced state manifold is constructed accordingly in the extended phase space of joint angle, joint velocity, and actuation limit. Within the iteration loops for partitioned joint angle and actuation limit, a nonlinear constrained optimization problem is formulated where the dynamic models of the legged mechanism are incorporated. The necessary conditions for balancing, such as the Zero-Moment Point, positive normal reaction, friction, and the ability to end up at a final static equilibrium, are implemented along with the system parameters for generality. The sequential quadratic programming method numerically solves for the velocity extrema within the complete feasible domain to construct the balanced state manifold as a viability kernel, which is a reachable superset of all possible controller-based domains. The balanced state manifold, along with its demonstration using the proposed optimal balancing motion for minimum energy and biped walking motions in sagittal plane, shows valid features that are physically consistent. The framework can be extended to systems in three-dimension with higher complexity, both in single and double support phases, for the development and stability analysis of walking robots and humans.  相似文献   

20.
为了有效地提高仿人机器人动步行能力,利用基于预观控制的ZMP 步态生成模式的优点并引入脚尖 脚后跟与地面间的旋转关节,生成了机器人的质心和踝关节轨迹.同时,为了得到更快的步行速度,提出了侧向质 心摆动幅度递减和腰关节偏摆力矩补偿的方法.最后在虚拟物理环境下,利用动力学仿真软件实现了虚拟3-D 仿人 机器人快速动步行.仿真结果证明了所采用方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号