首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

2.
Mg2In0.1Ni solid solution with an Mg2Ni-type structure has been synthesized and its hydrogen storage properties have been investigated. The results showed that the introduction of In into Mg2Ni not only significantly improved the dehydrogenation kinetics but also greatly lowered the thermodynamic stability. The dehydrogenation activation energy (Ea) and enthalpy change (ΔH) decreased from 80 kJ/mol and 64.5 kJ/mol H2 to 28.9 kJ/mol and 38.4 kJ/mol H2, respectively. The obtained results point to a method for improving not only the thermodynamic but also the kinetic properties of hydrogen storage materials.  相似文献   

3.
The effects of Ni and Co addition on the hydrogen storage properties of Mg3Mm alloy was studied by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and pressure-composition isotherm (PCI) measurement. The hydrogen absorption kinetics and the thermodynamic parameters (apparent ΔH, ΔS) for Mg3Mm dehydrogenation reactions in Mg3Mm, Mg3MmNi0.1 and Mg3MmNi0.1Co0.1 alloys have been also investigated. The maximum hydrogen storage content of Mg3Mm, Mg3MmNi0.1 and Mg3MmNi0.1Co0.1 alloys was improved due to that the addition of Ni and/or Co further spurred the MmH3 phase transforming to MmH2 phase. On the other side, the kinetics curves show the addition of Co could enhance hydrogen absorption rate while the addition of Ni change the hydrogenation reaction mechanism.  相似文献   

4.
Mg3MNi2 (M = Al, Ti, Mn) ternary intermetallic compounds with cubic structure are a new type of potential hydrogen storage alloys. Using ab initio density functional theory (DFT) calculations, the energetics and electronic structures of Mg3MNi2 (M = Al, Ti, Mn) compounds are systematically investigated. The optimized structural parameters including lattice constants and internal atomic positions are close to experimental data determined from X-ray powder diffraction. The calculated results of formation enthalpy ΔHform show that the stabilities of cubic Mg3MNi2 (M = Al, Ti, Mn) compound, compared with hexagonal Mg2Ni, increase in the order of Mg3MnNi2, Mg2Ni, Mg3TiNi2 and Mg3AlNi2, whereas the stabilities of their saturated Mg3MNi2H3 (M = Al, Ti, Mn) hydrides, compared with monoclinic Mg2NiH4, decrease in the order of Mg2NiH4, Mg3AlNi2H3, Mg3TiNi2H3 and Mg3MnNi2H3. Further calculations of hydrogen desorption enthalpy ΔHdes indicate that these cubic Mg3MNi2 (M = Al, Ti, Mn) compounds possess promising dehydrogenation properties for their relatively lower ΔHdes values. Among of them, the dehydrogenation ability of Mg3TiNi2 is the most pronounced. Analysis of electronic structures suggests that the strong covalent bonding interactions between Ni and M within cubic Mg3MNi2 (M = Al, Ti, Mn) are dominant and directly control the structural stabilities of these compounds.  相似文献   

5.
Evolution of microstructure and hydrogen storage performances were studied in a Y substituted Mg24Ni10Cu2 hydrogen storage alloy. Interactions of Y and Cu on the phase structure and hydrogen storage properties were explore. Substitution by Y refined the microstructure and yield existence of YMgNi4. Furthermore, Y addition promoted the replacement of Cu for Ni in the Mg2Ni.The study of the alloy's dehydrogenation performance and mechanism showed that the addition of Y did not alter the mechanism of random nucleation and subsequent growth, but reduced the activation energy of the dehydrogenation of the alloy from 77.4 kJ/mol to 67.6 kJ/mol. The thermodynamic energy of the dehydrogenation was also improved, and the enthalpy change (ΔH) and entropy change (ΔS) of the Mg2NiH4 phase decreased from 67.1 J/K/mol H2 and 123.1 J/K/mol H2 to 61.1 J/K/mol H2 and 115.4 J/K/mol H2, respectively. Furthermore, the density functional theory calculation showed that the addition of Y promoted the substitution of Cu for Ni, further reduced the stability of the main hydride Mg2NiH4, facilitated the release of hydrogen, and reduced the ΔH and ΔS of the hydride dehydrogenation.  相似文献   

6.
A Mg(In, Y) ternary solid solution was successfully synthesized by two-step method, namely sintering the elemental powders and subsequent milling. The formation of Mg(In, Y) indicates that the solubility of Y in the Mg lattice is expanded due to the existence of In. The as-synthesized Mg90In5Y5 solid solution transformed to MgH2, YH3, In3Y and MgIn compound upon hydrogenation, the hydrogenated products except for the YH3 recovered to Mg(In, Y) solid solution after dehydrogenation. The Mg90In5Y5 solid solution exhibited a decreased reaction enthalpy of 62.9 kJ/(mol H2), reduction by ca. 5 kJ/(mol H2) or 12 kJ/(mol H2) than the Mg95In5 binary solid solution and pure Mg, respectively. The working temperature as well as the activation energies for the hydriding and dehydriding were also decreased in comparison with those of Mg(In) binary solid solution, which are attributed to the reduced reaction enthalpy and the catalytic role of YH3. Our work indicates that the thermodynamic and kinetic tuning of MgH2 are realized in the Mg(In, Y) ternary solid solution.  相似文献   

7.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

8.
In this work, the as-cast Mg-rich Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys are prepared by the semi-continuous casting method, and their hydrogen storage performance and catalytic mechanisms are investigated by experimental and first-principles calculations approaches. The results show that the LPSO phases decompose and in-situ form the RE(Gd/Y)Hx(x = 2,3) nano-hydrides upon hydrogenation. These nano-hydrides not only serve as the in-situ catalysts to promote the hydrogen ab/desorption of Mg matrix, but also present the pinning effect to inhibit the growth of Mg/MgH2 grains during hydrogenation and dehydrogenation. Comparatively, the two alloys exhibit the similar hydrogen absorption kinetics, while the hydrogen desorption kinetics of Mg98.5Gd1Zn0.5 is superior to that of Mg98.5Gd0.5Y0.5Zn0.5. The first-principles calculations reveal that the GdH2 and YH2 hydrides exhibit different catalytic effects on weakening the bond strength of H–H within H2 and Mg–H within MgH2, which interprets well the differences in the hydrogen ab/desorption kinetics between Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys.  相似文献   

9.
YH2/Y2O3 nanocomposite was prepared and introduced to Mg0.97Zn0.03 solid solution alloy forming a nanocomposite of Mg0.97Zn0.03-10 wt%YH2/Y2O3 by mechanical milling. The phase components and microstructure were systematically investigated by XRD, SEM and STEM. Hydrogenation of Mg0.97Zn0.03 solid solution resulted in phase segregation into MgH2 and intermetallic compound MgZn2. The in-situ formed ultra-fine MgZn2 homogeneously dispersed in MgH2 matrix, and returned to Mg(Zn) solid solution through dehydrogenation. This reversible phase transition of Mg(Zn) solid solution benefited to thermodynamic destabilization of MgH2. The co-dopant of YH2 and Y2O3 exhibited synergistic catalytic effects on the hydrogen absorption and desorption of Mg0.97Zn0.03 solid solution alloy. As a result, Mg0.97Zn0.03-10 wt%YH2/Y2O3 nanocomposite showed significantly improved kinetics with obviously lowered hydriding and dehydriding activation energy of 45.8 kJ⋅mol−1⋅H2 and 74.7 kJ⋅mol−1⋅H2, respectively, and the enthalpy of hydrogen desorption was reduced to 72.2 kJ⋅mol−1⋅H2.  相似文献   

10.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

11.
Ternary eutectic Mg76.87Ni12.78Y10.35 (at. %) ribbons with mixed amorphous and nanocrystalline phases were prepared by melt spinning. The microstructures of the melt-spun, hydrogenated and dehydrogenated samples were examined and compared by X-ray diffraction and transmission electron microscopy. The amorphous structure transforms into a thermally stable nanocrystalline structure with a grain size of about 5 nm during hydrogen ab/desorption cycles. The Mg, Mg2Ni and phases with Y in the melt-spun state transform into MgH2, Mg2NiH4, Mg2NiH0.3, YH2 and YH3 after hydrogenation, and transform back to Mg, Mg2Ni and YH2 upon subsequent dehydrogenation. The reaction enthalpy (ΔH) and entropy (ΔS) of the higher plateau pressure corresponding to Mg2Ni hydride formation are −53.25 kJ mol−1 and −107.74 J K−1 mol−1, respectively. The amorphous/nanocrystalline structure effectively reduces the enthalpy and entropy of Mg2Ni hydride formation, but has little effect on Mg. The activation energy for dehydrogenation of the hydrogenated ribbons is 69 kJ mol−1. This suggests that Mg–Ni–Y with ternary eutectic composition can form an amorphous/nanocrystalline structure by melt spinning, and this nanostructure efficiently improves the thermodynamics and kinetics for hydrogen storage.  相似文献   

12.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

13.
In this study, we report the hydrogen absorption/desorption properties and reaction mechanism of the MgH2-NaAlH4 (4:1) composite system. This composite system showed improved dehydrogenation performance compared with that of as-milled NaAlH4 and MgH2 alone. The dehydrogenation process in the MgH2-NaAlH4 composite can be divided into four stages: NaAlH4 is first reacted with MgH2 to form a perovskite-type hydride, NaMgH3 and Al. In the second dehydrogenation stage, the Al phase reacts with MgH2 to form Mg17Al12 phase accompanied with the self-decomposition of the excessive MgH2. NaMgH3 goes on to decompose to NaH during the third dehydrogenation stage, and the last stage is the decomposition of NaH. Kissinger analysis indicated that the apparent activation energy, EA, for the MgH2-relevent decomposition in MgH2-NaAlH4 composite was 148 kJ/mol, which is 20 kJ/mol less than for as-milled MgH2 (168 kJ/mol). X-ray diffraction patterns indicate that the second, third, and fourth stages are fully reversible. It is believed that the formation of Al12Mg17 phase during the dehydrogenation process alters the reaction pathway of the MgH2-NaAlH4 (4:1) composite system and improves its thermodynamic properties.  相似文献   

14.
The Mg2NiH4 complex hydrides were synthesized by high-energy ball milling (HEBM) MgH2 + Ni mixtures. Multi-walled carbon nanotubes (MWCNTs) or TiF3 as catalysts were added and the catalytic-dehydrogenation behaviors were investigated. All prepared samples are characterized by X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM) and differential scanning calorimetry (DSC) to acquire information of microstructure, phase compositions, surface and dehydrogenation properties. The results indicate that the method of adding catalysts by HEBM is reasonable and the hydrogen desorption property of Mg2NiH4 is improved by catalysts. It is worth noting that the dehydrogenation temperature (TD) and the activation energy (Ea) of Mg2NiH4 catalyzed by MWCNTs coupling with TiF3 are reduced to 230 °C (243.6 °C of Mg2NiH4) and 53.24 kJ/mol (90.13 kJ/mol of Mg2NiH4), respectively. The addition of proper catalysts is proved to be an effective strategy to decrease TD and Ea of Mg2NiH4 hydrides.  相似文献   

15.
The hydrogenation characteristics and hydrogen storage kinetics of the melt-spun Mg10NiR (R = La, Nd and Sm) alloys have been studied comparatively. It is found that the Mg10NiNd and Mg10NiSm alloys are in amorphous state but the Mg10NiLa alloy is composed of an amorphous phase and minor crystalline La2Mg17 after melt-spinning. The alloys can be hydrogenated into MgH2, Mg2NiH4 and a rare earth metal hydride RHx. The rare earth metal hydride and Mg2NiH4 synergistically provide a catalytic effect on the hydrogen absorption–desorption reactions in the Mg−H2 system. The hydrogen storage kinetics is not influenced by different rare earth metal hydrides but by the particle size of the rare earth metal hydrides.  相似文献   

16.
For hydrogen storage applications a nanocrystalline Mg90Ni8RE2 alloy (RE = Y, Nd, Gd) was produced by melt spinning. The microstructure in the as-cast, melt-spun and hydrogenated state was characterized by X-ray diffraction and electron microscopy. Its activation, hydrogenation/dehydrogenation properties and cycle stability were examined by thermogravimetry in the temperature range from 50 °C to 385 °C and pressures up to 30 bar H2. It was found that the activated alloy can reach a reversible gravimetric hydrogen storage density of up to 5.6 wt.%-H. Furthermore, the reversible gravimetric hydrogen storage density increases with the number of hydrogenation/dehydrogenation cycles, while the dehydrogenation rate remained unchanged. This observation was attributed to the increase of the specific surface area of the ribbon due to cracking during repeated cycling. However, the microstructure of the hydrogenated alloy remained nanocrystalline throughout cycling.  相似文献   

17.
MgH2-Li3AlH6 mixture shows a mutual activation effect between the components. But the dehydrogenation kinetics is still slow, especially at temperature as low as 250 °C. Hereby, an additive (TiF3) was introduced into the mixture in the present study. The reaction mechanisms were studied by the combined analyses of X-ray diffraction (XRD), thermogravimetric analysis (TGA), as well as thermodynamic calculations. A two-step ball milling method could reduce the mechanical decomposition of Li3AlH6 effectively and was adopted. During milling, Li3AlH6 reacts with TiF3 and produces Al3Ti while MgH2 remains stable. All the species are well mixed after milling and the grain size is as small as 100 nm. During TGA test, all the reactions occur at lower temperatures compared with undoped mixture, especially the dehydrogenation of MgH2, which shows a decrease of 60 °C. Its activation energy is reduced by 32.0 kJ mol−1. The first three isothermal (250 °C) cycles indicate that the kinetics of dehydrogenation has been greatly enhanced, showing a reversible capacity of 4.5 wt.% H2. The time needed for the 1st dehydrogenation has been shortened to 3600 s from 8000 s for the undoped mixture. These improvements are mainly attributed to the catalytic effect of the in-situ formed Al3Ti. But there is no influence on the rehydrogenation kinetics and the enthalpy of the dehydrogenation of MgH2 is unchanged.  相似文献   

18.
The intermetallic compound Mg0.65Sc0.35 was found to form a nano-structured metal hydride composite system after a (de)hydrogenation cycle at temperatures up to 350 °C. Upon dehydrogenation phase separation occurred forming Mg-rich and Sc-rich hydride phases that were clearly observed by SEM and TEM with the Sc-rich hydride phase distributed within Mg/MgH2-rich phase as nano-clusters ranging in size from 40 to 100 nm. The intermetallic compound Mg0.65Sc0.35 showed good hydrogen uptake, ca. 6.4 wt.%, in the first charging cycle at 150 °C and in the following (de)hydrogenation cycles, a reversible hydrogen capacity (up to 4.3 wt.%) was achieved. Compared to the as-received MgH2, the composite had faster cycling kinetics with a significant reduction in activation energy Ea from 159 ± 1 kJ mol−1 to 82 ± 1 kJ mol−1 (as determined from a Kissinger plot). Two-dehydrogenation events were observed by DSC and pressure–composition-isotherm (PCI) measurements, with the main dehydrogenation event being attributed to the Mg-rich hydride phase. Furthermore, after the initial two cycles the hydrogen storage capacity remained unchanged over the next 55 (de)hydrogenation cycles.  相似文献   

19.
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted by element Cu, and the nanocrystalline Mg2Ni-type Mg20Ni10−xCux (x = 0, 1, 2, 3, 4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus. The results show that the substitution of Cu for Ni does not change the major phase Mg2Ni. The hydrogen absorption capacity of the alloys first increases and then decreases with rising Cu content, but the hydrogen desorption capacity of the alloys grows with increasing Cu content. The melt spinning significantly improves the hydrogenation and dehydrogenation capacity and kinetics of the alloys.  相似文献   

20.
This study investigated the hydrogenation and dehydrogenation behavior of Mg2Co nanoparticles and carbon nanotube (CNT) composites using temperature-programmed deposition, Raman spectroscopy, and X-ray diffraction (XRD). We used the mechanical alloying method to prepare nanosized Mg2Co particles on CNTs with three loadings of alloys. The introduction of CNTs showed dehydrogenation, hydrogen desorption starting at 370 °C, with the majority of hydrogen being below 500 °C. This can be explained by the fact that Mg2Co alloy deposited on CNT surface induced the dissociation of hydrogen into two atoms, which were spilt over and then intercalated into the interlayer of CNT. Accordingly, the atomic intercalation enabled the reduction of the hydrogen desorption activation barrier. The spillover mechanism of hydrogen storage can be confirmed by XRD and Raman spectroscopy because of larger interspacing (d0 0 2) and weaker graphite degree (ID/IG) of CNTs after hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号