首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrocarbon resources adequately meet today’s energy demands. Due to the environmental impacts, renewable energy sources are high in the agenda. As an energy carrier, hydrogen is considered one of the most promising fuels for its high energy density as compared to hydrocarbon fuels. Therefore, hydrogen has a significant and future use as a sustainable energy system. Conventional methods of hydrogen extraction require heat or electrical energy. The main source of hydrogen is water, but hydrogen extraction from water requires electrical energy. Electricity produced from renewable energy sources has a potential for hydrogen production systems. In this study, an electrolyzer using the electrical energy from the renewable energy system is used to describe a model, which is based on fundamental thermodynamics and empirical electrochemical relationships. In this study, hydrogen production capacity of a stand-alone renewable hybrid power system is evaluated. Results of the proposed model are calculated and compared with experimental data. The MATLAB/Simscape® model is applied to a stand-alone photovoltaic-wind power system sited in Istanbul, Turkey.  相似文献   

2.
It is necessary to have an energy management system based on one or more control strategies to sense, monitor, and control the behavior of the hybrid energy sources. In renewable hybrid power systems containing fuel cells and batteries, the hydrogen consumption reduction and battery state of charge (SOC) utilizing are the main objectives. These parameters are essential to get the maximum befits of cost reduction as well as battery and hydrogen storage lifetime increasing. In this paper, a novel hybrid energy management system (HEMS) was designed to achieve these objectives. A renewable hybrid power system combines: PV, PEMFC, SC, and Battery was designed to supply a predetermined load with its needed power. This (REHPS) depends on the PV power as a master source during the daylight. It uses the FC to support as a secondary source in the night or shading time. The battery is helping the FC when the load power is high. The supercapacitor (SC) is working at the load transient or load fast change. The proposed energy management system uses fuzzy logic and frequency decoupling and state machine control strategies working together as a hybrid strategy where the switching over between both strategies done automatically based on predetermined values to obtain the minimum value of hydrogen consumption and the maximum value of SOC at the same time. The proposed HEMS achieves 19.6% Hydrogen consumption saving and 5.4% increase in SOC value compared to the results of the same two strategies when working as a stand-alone. The load is designed to show a surplus power when the PV power is at its maximum value. This surplus power is used to charge the battery. To validate the system, the results were compared with the results of each strategy if working separately. The comparison confirms the achievement of the hybrid energy management system goal.  相似文献   

3.
Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. Focusing on the inevitable impact on the grid caused by strong randomicity and apparent intermittency of photovoltaic (PV) generation system, modeling and control strategy of pure green and grid-friendly hybrid power generation system based on hydrogen energy storage and supercapacitor (SC) is proposed in this paper. Aiming at smoothing grid-connected power fluctuations of PV and meeting load demand, the alkaline electrolyzer (AE) and proton exchange membrane fuel cell (PEMFC) and SC are connected to DC bus of photovoltaic grid-connected generation system. Through coordinated control and power management of PV, AE, PEMFC and SC, hybrid power generation system friendliness and active grid-connection are realized. The validity and correctness of modeling and control strategies referred in this paper are verified through simulation results based on PSCAD/EMTDC software platform.  相似文献   

4.
Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system.  相似文献   

5.
The economic sustainability of renewable based sources is a matter of debate and the technology is changing very fast. We here considered three examples of exploitation of bioethanol as renewable source: a) centralised hydrogen prodution; b) heat and power cogeneration (residential scale); c) ethylene production. Bioethanol can be a suitable starting material for the production of H2, as fuel or chemical, or syngas. After designing the process and the implementation of kinetic expressions based on experimental data collected in our lab or derived from the literature, an economic evaluation and sensitivity analysis allowed to assess the economic sustainability of hydrogen production and purification by the steam reforming of bioethanol. The attention was mainly put on diluted bioethanol solutions, easy to purify and cost effective. The centralised hydrogen production from bioethanol was considered cost effective at least starting from diluted bioethanol from first generation crops. When dowscaling the hydrogen production and purification unit to feed a 5 kW fuel cell, the most undetermined item was the fuel cell cost, since no acclarate market price is still available.Finally, ethylene market is steadily increasing by ca. 4% each year due to economic growth. The demand for renewable ethylene, as well as the increasing oil price experienced in the recent past, suggested the development of alternative routes to ethylene. Based on the increasing availability of ethanol form renewable biomass, bioethanol-to-bioethylene processes have been recently designed, finding economic sustainability, at the moment, in Brazil.  相似文献   

6.
The Mexican territory has a large potential for renewable energy development, such as geothermal, hydro, biofuels, wind and solar. Thus, a 2.5 kW hybrid power system (solar, wind and hydrogen) was designed and installed to meet the power demand for a stand-alone application at the University of Zacatecas. The hybrid unit integrates three power energy sources –a photovoltaic system (PV), a micro-wind turbine (WT), a prototype of a unitized regenerative fuel cell (URFC) and energy storage devices (batteries)– in addition to their interaction methodology. The main contribution of this work is the URFC integration to a hybrid power system for the production of H2 (water electrolyzer mode) and energy (fuel cell mode). These three energy technologies were connected in parallel, synchronized to the energy storage system and finally coupled to a power conversion module. To achieve the best performance and energy management, an energy management and control strategy was developed to the properly operation of the power plant. A meteorological station that has wireless sensors for the temperature, the humidity, the solar radiation and the wind speed provides the necessary information (in real time) to the monitor and control software, which computes and executes the short and mid–term decisions about the energy management and the data storage for future analysis.  相似文献   

7.
Lately, interest in renewable sources, especially wind and solar energy, has shown a significant increase in all over the world that mostly depends on climate-threatening conventional fossil fuels. Besides, hybrid use of these power sources with suitable back-up units provides many advantages compared to sole use of these sources. In this regard, a hybrid system consisting of a wind turbine for utilizing the wind energy, photovoltaic panels for solar energy, fuel cell for providing back-up power and a battery unit for storing the possible excess energy production and supplying the transient load is considered in this study. Experimental assessment of this system in different case studies including the real time measured dynamic power demand of an office block is realized. The collaborative actions of the proposed hybrid system with a fuzzy logic based energy management strategy during fluctuations of renewable-based power production are investigated. Thus, results of this study may be valuable for evaluating the feasibility of stand-alone hybrid renewable energy units for future power systems.  相似文献   

8.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

9.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

10.
Hydrogen fuelling station is an infrastructure for the commercialisation of hydrogen energy utilising fuel cells, particularly, in the automotive sector. Hydrogen fuel produced by renewable sources such as the solar and wind energy can be an alternative fuel to depress the use of fuels based on fossil sources in the transport sector for sustainable clean energy strategy in future. By replacing the primary fuel with hydrogen fuel produced using renewable sources in road transport sector, environmental benefits can be achieved. In the present study, techno-economic analysis of hydrogen refuelling station powered by wind-photovoltaics (PV) hybrid power system to be installed in ?zmir-Çe?me, Turkey is performed. This analysis is carried out to a design of hydrogen refuelling station which is refuelling 25 fuel cell electric vehicles on a daily basis using hybrid optimisation model for electric renewable (HOMER) software. In this study, National Aeronautics and Space Administration (NASA) surface meteorology and solar energy database were used. Therefore, the average wind speed during the year was assessed to be 5.72 m/s and the annual average solar irradiation was used to be 5.08 kW h/m2/day for the considered site. According to optimisation results obtained for the proposed configuration, the levelised cost of hydrogen production was found to be US $7.526–7.866/kg in different system configurations. These results show that hydrogen refuelling station powered by renewable energy is economically appropriate for the considered site. It is expected that this study is the pre-feasibility study and obtained results encougare the hydrogen refuelling station to be established in Turkey by inventors or public institutions.  相似文献   

11.
Conventional energy technologies are not environmentally friendly, are not renewable, and also the cost of using fossil and nuclear fuels will go higher and higher (anecdotal evidence suggests that consumers will be paying three times their current bill 5 years from now). Therefore, renewable energy sources will play important roles in electricity generation. This paper highlights the advantages of renewable technologies, like future prospects for the poor population, being environmentally friendly, and also available in abundance. This paper points outs the factors seeking hydrogen energy and fuel cell technology to eradicate environmental disasters. This paper is significant as it looks into optimal utilization of renewable energy sources with major emphasis on H2 optimization and fuel cells application utilizing cogeneration technology. This paper discusses the multiple hydrogen production pathways from different sources, including renewable and nonrenewable sources, H2 safety, and also barriers to use of hydrogen energy. This paper recommends different types of quantitative and qualitative methods for optimal energy planning, and different types of fuel cells are also discussed. This paper explains a hybrid system inclusive of renewable energy, with its types and benefits. Finally, this paper concludes that Australia could switch from conventional fossil fuel technology to hybrid energy inclusive of renewable energy.  相似文献   

12.
A real-time energy management system for an off-grid smart home is presented in this paper. The primary energy sources for the system are wind turbine and photovoltaics, with a fuel cell serving as a supporting energy source. Surplus power is used to generate hydrogen through an electrolyzer. Data on renewable energy and load demand is gathered from a real smart home located in the Yildiz Technical University Smart Home Laboratory. The aim of the study is to reduce hydrogen consumption and effectively utilize surplus renewable energy by managing controllable loads with fuzzy logic controller, all while maintaining the user's comfort level. Load shifting and tuning are used to increase the demand supplied by renewable energy sources by 10.8% and 13.65% from wind turbines and photovoltaics, respectively. As a result, annual hydrogen consumption is reduced by 7.03%, and the average annual efficiency of the fuel cell increases by 4.6%  相似文献   

13.
A mobile renewable house using PV/wind/fuel cell hybrid power system   总被引:1,自引:0,他引:1  
A photovoltaic/wind/fuel cell hybrid power system for stand-alone applications is proposed and demonstrated with a mobile house. This concept shows that different renewable sources can be used simultaneously to power off-grid applications. The presented mobile house can produce sufficient power to cover the peak load. Photovoltaic and wind energy are used as primary sources and a fuel cell as backup power for the system. The power budgeting of the system is designed based on the local data of solar radiation and wind availability. Further research will focus on the development of the data acquisition system and the implementation of automatic controls for power management.  相似文献   

14.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

15.
A major challenge related to the design of a hybrid renewable energy hydrogen system is which energy sources to include and at what capacity, for regionally different potentials of renewable energy and hydrogen demand. In addition, once the plant is in operation, control variables need to be optimised. The problem resorts to an area of multiple criteria decision making referred to as multi-objective optimisation. The results obtained from these type of algorithms include not only one optimal solution, but a set of optimal solutions (Pareto front) thereby offering a system designer several options. This set of solutions can be hard to interpret and a method is needed to automatically extract useful design and control strategies from this information. A methodology that is quite successful in deriving human interpretable rules from this type of information is genetic fuzzy systems. In this work a k-means clustering algorithm is used to generate membership functions and a fuzzy rule-base is trained by means of a genetic algorithm. The genetic fuzzy system obtained is reduced by determining the minimum number of rules followed by a membership function reduction process. The reduced genetic fuzzy system is deemed more interpretable. Geographic weather data from three different sites are used to generate data to be used in the genetic fuzzy method. Results show that the technique provides valuable information that can be used for the design of such hybrid renewable energy hydrogen production systems.  相似文献   

16.
This paper presents an experimental study of a standalone hybrid microgrid system. The latter is dedicated to remote area applications. The system is a compound that utilizes renewable sources that are Wind Generator (WG), Solar Array (SA), Fuel Cell (FC) and Energy Storage System (ESS) using a battery. The power electronic converters play a very important role in the system; they optimize the control and energy management techniques of the various sources. For wind and solar subsystem, the speed and Single Input Fuzzy Logic (SIFL) controllers are used respectively to harvest the maximum power point tracking (MPPT). To maintain a balance of energy in the hybrid system, an energy management strategy based on the battery state of charge (SOC) has been developed and implemented experimentally. The AC output voltage regulation was achieved using a Proportional Integral (PI) controller to supply a resistive load with constant amplitude and frequency. According to the obtained performances, it was concluded that the proposed system is very promising for potential applications in hybrid renewable energy management systems.  相似文献   

17.
It has become imperative for the power and energy engineers to look out for the renewable energy sources such as sun, wind, geothermal, ocean and biomass as sustainable, cost-effective and environment friendly alternatives for conventional energy sources. However, the non-availability of these renewable energy resources all the time throughout the year has led to research in the area of hybrid renewable energy systems. In the past few years, a lot of research has taken place in the design, optimization, operation and control of the renewable hybrid energy systems. It is indeed evident that this area is still emerging and vast in scope. The main aim of this paper is to review the research on the unit sizing, optimization, energy management and modeling of the hybrid renewable energy system components. Developments in research on modeling of hybrid energy resources (PV systems), backup energy systems (Fuel Cell, Battery, Ultra-capacitor, Diesel Generator), power conditioning units (MPPT converters, Buck/Boost converters, Battery chargers) and techniques for energy flow management have been discussed in detail. In this paper, an attempt has been made to present a comprehensive review of the research in this area in the past one decade.  相似文献   

18.
In this study, a multi-source hybrid power system consisting of wind turbine (WT), photovoltaic (PV) solar unit, proton exchange membrane (PEM) FC and battery is proposed. The WT and PV generation systems are considered as the main power sources for utilizing the available renewable energy. The FC system is proposed as the back-up generation combined with electrolyzer unit and battery picks up the fast load transients and ripples. In such a hybrid system, energy management plays an important role for the overall system performance and durability. From this perspective, a fuzzy logic based intelligent controller is considered in this study. Besides, a detailed minute-scale meteorological and load demand data is utilized in the simulation process and the importance of utilization of such detailed data is presented. This detailed analysis may be valuable for evaluating the feasibility of grid-independent hybrid renewable energy units for upcoming power systems.  相似文献   

19.
When it comes to the energy planning, computer programs like H2RES are becoming valuable tools. H2RES has been designed as support for simulation of different scenarios devised by RenewIsland methodology with specific purpose to increase integration of renewable sources and hydrogen into island energy systems. The model can use wind, solar, hydro, biomass, geothermal as renewable energy sources and fossil fuel blocks and grid connection with mainland as back up. The load in the model can be represented by hourly and deferrable electricity loads of the power system, by hourly heat load, by hydrogen load for transport and by water load depending on water consumption. The H2RES model also has ability to integrate different storages into island energy system in order to increase the penetration of intermittent renewable energy sources or to achieve a 100% renewable island. Energy storages could vary from hydrogen loop (fuel cell, electrolyser and hydrogen storage) to reversible hydro or batteries for smaller energy systems. The H2RES model was tested on the power system of the Island of Porto Santo – Madeira, the islands of Corvo, Graciosa, and Terrciera – Azores, Sal Island – Cape Verde, Portugal, the Island of Mljet, Croatia and on the energy system of the Malta. Beside energy planning of the islands, H2RES model could be successfully applied for simulation of other energy systems like villages in mountain regions or for simulation of different individual energy producers or consumers.  相似文献   

20.
Intermittency is one of the main obstacles that inhibit the wide adoption of the renewable energy in the power sector. Small-scale fluctuations can be tackled by short-term energy storage system, whereas long-term or seasonal intermittencies rely on large-scale energy management solutions. Besides the supply and demand mismatch in temporal domain, renewable energy sources are usually far away from consumption points. To connect the energy sources to the demand cost-effectively, cable transmission is usually the default option, and considering the long distance, other emerging energy carriers such as hydrogen could be a feasible option. However, there is handful studies on the quantitative evaluation of the long-distance energy transmission cost. This paper investigated the economic feasibility of renewable energy transmission via routes of power cable and gas pipeline. In the direct power transmission case, renewable energy is transmitted via HVDC cable and then converted to hydrogen for convenient storage. The alternative case converts renewable energy into hydrogen at the source and transports the hydrogen in the gas pipeline to consumers. Existing data available from public domain are used for cost estimation. Results show that the improvements of capacity factor and transmission scale are the most cost-effective approach to make the renewable hydrogen economically viable. At 4000 km of transmission distance, renewable hydrogen LCOE of 7 US$/kg and 9 US$/kg are achievable for the corresponding optimum cases, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号