首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the best performance of the MgH2 destabilized system with different ratios of Cd (1:1, 2:1, 3:1 and 4:1) have been studied for the first time. Remarkable enhancements on the onset dehydrogenation temperature, as well as the isothermal de/rehydrogenation kinetics were shown by the 4MgH2 + Cd composite. In order to improve the hydrogen storage properties of the 4MgH2 + Cd, TiF3 was added and its catalytic effects were investigated. Temperature programmed dehydrogenation result had revealed that the onset dehydrogenation temperature was improved once the 10 wt% TiF3 was incorporated into the 4MgH2 + Cd system. The absorption and desorption kinetics were also improved compared to the un-doped 4MgH2 + Cd composite system. The scanning electron microscope result had displayed that the 4MgH2 + Cd + 10 wt% TiF3 had the smallest particle size compared to the pure and the ball-milled MgH2, as well as the 4MgH2 + Cd composite system. The X-ray diffraction results had demonstrated the formation of an intermediate compound, Mg3Cd, which was formed during the heating process. For the TiF3-doped sample, it is reasonable to conclude that the in-situ formed TiH2 and F-containing species play a synergetic role to encourage interactions between the MgH2 and the Cd and thus further ameliorate the performances of the hydrogen storage of 4MgH2 + Cd composite system.  相似文献   

2.
Reactive Hydride Composites (RHCs), ball-milled composites of two or more different hydrides, are suggested as an alternative for solid state hydrogen storage. In this work, dehydrogenation of 2NaBH4 + MgH2 system under vacuum was investigated using complementary characterization techniques. At first, thermal programmed desorption of as-milled composite and single compounds was used to identify the temperature range of hydrogen release. RHC samples annealed at various temperatures up to 500 °C were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. It was found that the dehydrogenation reaction under vacuum is likely to proceed as follows: 2NaBH4 + MgH2 (>250 °C) → 2NaBH4 + 1/2MgH2 + 1/2Mg + 1/2H2 (>350 °C) ↔ 3/2NaBH4 + 1/4MgB2 + 1/2NaH + 3/4Mg + 7/4H2 (>450 °C) → 2Na + B + 1/2Mg + 1/2MgB2 + 5H2. In addition, presence of NaMgH3 phase suggests the occurrence of secondary reactions.  相似文献   

3.
The desorption mechanism of as-milled 2NaBH4 + MgH2 was investigated by volumetric analysis, X-ray diffraction and electron microscopy. Hydrogen desorption was carried out in 0.1 bar hydrogen pressure from room temperature up to 450 °C at a heating rate of 3 °C min−1. Complete dehydrogenation was achieved in two steps releasing 7.84 wt.% hydrogen. Desorption reaction in this system is kinetically restricted and limited by the growth of MgB2 at the Mg/Na2B12H12 interface where the intermediate product phases form a barrier to diffusion. During desorption, MgB2 particles are observed to grow as plates around NaH particles.  相似文献   

4.
Transition metal halides are mostly used as dopants to improve the hydrogen storage properties of LiAlH4, but they will cause hydrogen capacity loss because of their relatively high molecular weights and reactions with LiAlH4. To overcome these drawbacks, active nano-sized TiH2 (TiH2nano) prepared by reactive ball milling is used to dope LiAlH4. It shows superior catalytic effect on the dehydrogenation of LiAlH4 compared to commercial TiH2. TiH2nano-doped LiAlH4 starts to release hydrogen at 75 °C, which is 80 °C lower than the onset dehydrogenation temperature of commercial LiAlH4. About 6.3 wt.% H2 can be released isothermally at 100 °C (800 min) or at 120 °C (150 min). The apparent activation energies of the first two dehydrogenation reactions of LiAlH4 are reduced by about 20 and 24 kJ mol−1, respectively. Meanwhile, the regeneration of LiAlH4 is realized through extracting the solvent from LiAlH4·4THF, which is obtained by ball milling the dehydrogenated products of TiH2nano-doped LiAlH4 in the presence of THF and 5 MPa H2. This suggests that TiH2 is also an effective catalyst for the formation of LiAlH4·4THF.  相似文献   

5.
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 °C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 °C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be ∼43 kJ mol−1 H2, 10 kJ mol−1 lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo.  相似文献   

6.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

7.
In this paper, amorphous NiB nanoparticles were fabricated by chemical reduction method and the effect of NiB nanoparticles on hydrogen desorption properties of MgH2 was investigated. Measurements using temperature-programmed desorption system (TPD) and volumetric pressure–composition isotherm (PCI) revealed that both the desorption temperature and desorption kinetics have been improved by adding 10 wt% amorphous NiB. For example, the MgH2–10 wt%NiB mixture started to release hydrogen at 180 °C, whereas it had to heat up to 300 °C to release hydrogen for the pure MgH2. In addition, a hydrogen desorption capacity of 6.0wt% was reached within 10 min at 300 °C for the MgH2–10 wt%NiB mixture, in contrast, even after 120 min only 2.0 wt% hydrogen was desorbed for pure MgH2 under the same conditions. An activation energy of 59.7 kJ/mol for the MgH2/NiB composite has been obtained from the desorption data, which exhibits an enhanced kinetics possibly due to the additives reduced the barrier and lowered the driving forces for nucleation. Further cyclic kinetics investigation using high-pressure differential scanning calorimetry technique (HP-DSC) indicated that the composite had good cycle stability.  相似文献   

8.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

9.
(2LiNH2 + MgH2) system is one of the most promising hydrogen storage materials due to its suitable operation temperature and high reversible hydrogen storage capacity. In studies and applications, impurities such as CO, CO2, O2, N2 and CH4 are potential factors which may influence its performance. In the present work, hydrogen containing 1 mol% CO is employed as the hydrogenation gas source, and directly participates in the reaction to investigate the effect of CO on the hydrogen sorption properties of (2LiNH2 + MgH2) system. The results indicate that the hydrogen capacity of the (Mg(NH2)2 + 2LiH) system declines from 5 wt.% to 3.45 wt.% after 6 cycles of hydrogenation and dehydrogenation, and can not restore to its initial level when use purified hydrogen again. The hydrogen desorption kinetics decreases obviously and the dehydrogenation activation energy increases from 133.35 kJ/mol to 153.35 kJ/mol. The main reason for these is that two new products Li2CN2 and MgO appear after (2LiNH2 + MgH2) react with CO. They are formed on the surface of materials particles, which may not only cause a permanent loss of NH2−, but also prevent the substance transmission during the reaction process. After re-mechanically milling, both kinetics and dehydrogenation activation energy can be recovered to the initial level.  相似文献   

10.
Previous studies have shown that ferrites give a positive effect in improving the hydrogen sorption properties of magnesium hydride (MgH2). In this study, another ferrite, i.e., BaFe12O19, has been successfully synthesised via the solid state method, and it was milled with MgH2 to enhance the sorption kinetics. The result showed that the MgH2 + 10 wt% BaFe12O19 sample started to release hydrogen at about 270 °C which is about 70 °C lower than the as-milled MgH2. The doped sample was able to absorb hydrogen for 4.3 wt% in 10 min at 150 °C, while as-milled MgH2 only absorbed 3.5 wt% of hydrogen under similar conditions. The desorption kinetic results showed that the doped sample released about 3.5 wt% of hydrogen in 15 min at 320 °C, while the as-milled MgH2 only released about 1.5 wt% of hydrogen. From the Kissinger plot, the apparent activation energy of the BaFe12O19-doped MgH2 sample was 115 kJ/mol which was lower than the milled MgH2 (141 kJ/mol). Further analyses demonstrated that MgO, Fe and Ba or Ba-containing contribute to the improvement by serving as active species, thus enhancing the MgH2 for hydrogen storage.  相似文献   

11.
In order to increase the hydrogen storage capacity of Mg-based materials, a mixture with a composition of 2LiBH4 + MgF2 and LiBH4, which has a hydrogen storage capacity of 18.4 wt%, were added to MgH2. Ti isopropoxide was also added to MgH2 as a catalyst. A MgH2 composite with a composition of 40 wt%MgH2 + 25 wt%LiBH4 + 30 wt% (2LiBH4 + MgF2) + 5 wt%Ti isopropoxide (corresponding to 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide) was prepared by reactive mechanical grinding. The hydrogen storage properties of the sample were then examined. Hydrogen content vs. desorption time curves for consecutive 1st desorptions of 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide from room temperature to 823 K showed that the total desorbed hydrogen quantity for consecutive 1st desorptions was 8.30 wt%.  相似文献   

12.
MgH2 with 10 wt.% Ti0.4Mn0.22Cr0.1V0.28 alloy (termed the BCC alloy for its body centred cubic structure) and 5 wt.% carbon nanotubes (CNTs) were prepared by planetary ball milling, and its hydrogen storage properties were compared with those of the pure MgH2 and the binary mixture of MgH2 and the BCC alloy. The sample with CNTs showed considerable improvement in hydrogen sorption properties. Its temperature of desorption was 125 °C lower than for the pure sample and 59 °C lower than for the binary mixture. In addition, the gravimetric capacity of the ternary sample was 6 wt.% at 300 °C and 5.6 wt.% at 250 °C, and it absorbed 90% of this amount at 150 s and 516 s at 300 °C and 250 °C, respectively. It can be hypothesised from the results that the BCC alloy assists the dissociation of hydrogen molecules into hydrogen atoms and also promotes hydrogen pumping into the Mg/BCC interfaces, while the CNTs facilitate access of H-atoms into the interior of Mg grains.  相似文献   

13.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

14.
Study on the synergistic catalytic effect of the SrTiO3 and Ni on the improvement of the hydrogen storage properties of the MgH2 system has been carried out. The composites have been prepared using ball milling method and comparisons on the hydrogen storage properties of the MgH2 – Ni and MgH2 – SrTiO3 composites have been presented. The MgH2 – 10 wt% SrTiO3 – 5 wt% Ni composite is found to has a decomposition temperature of 260 °C with a total decomposition capacity of 6 wt% of hydrogen. The composite is able to absorb 6.1 wt% of hydrogen in 1.3 min (320 °C, 27 atm of hydrogen). At 150 °C, the composite is able to absorb 2.9 wt% of hydrogen in 10 min under the pressure of 27 atm of hydrogen. The composite has successfully released 6.1 wt% of hydrogen in 13.1 min with a total dehydrogenation of 6.6 wt% of hydrogen (320 °C). The apparent activation energy, Ea, for decomposition of SrTiO3-doped MgH2 reduced from 109.0 kJ/mol to 98.6 kJ/mol after the addition of 5 wt% Ni. The formation of Mg2Ni and Mg2NiH4 as the active species help to boost the performance of the hydrogen storage properties of the MgH2 system. Observation of the scanning electron microscopy images suggested the catalytic role of the SrTiO3 additive is based on the modification of composite microstructure.  相似文献   

15.
In order to understand the influence of defect zones on desorption behavior of MgH2MgH2, Xe 120 keV ion irradiation of this material has been performed. DSC, SEM measurements, and SRIM calculations have been used to characterize induced modifications and its influence on the hydrogen desorption behavior of MgH2MgH2. We have demonstrated that the near-surface area of MgH2MgH2 plays the crucial role in hydrogen desorption kinetics. DSC analysis provides clear picture of vacancies influence on H diffusion and desorption in MgH2MgH2, and points out that there is possibility to control the thermodynamic parameters by controlled ion bombardment.  相似文献   

16.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

17.
18.
In this work, MgH2–SiC–Ni was prepared by magneto-mechanical milling in hydrogen atmosphere. Scanning electron microscope mapping images showed a homogeneous dispersion of both Ni and SiC among MgH2 particles. Based on the differential scanning calorimetry traces, the temperature of desorption is reduced by doping MgH2 with SiC and Ni. Hydrogen absorption/desorption behaviour of the samples was investigated by Sievert's method at 300 °C, and the results showed that both capacity and kinetics were improved by adding SiC and Ni. The hydrogen desorption kinetic investigation indicated that for pure MgH2, the rate-determining step is surface controlled and recombination, while for the MgH2–SiC–Ni sample it is controlled as described by the Johnson–Mehl–Avrami 3D model (JMA 3D).  相似文献   

19.
The objective of the present work is the comparative study of the behaviour of the Nb- and Ti-based additives in the MgH2 single hydride and the MgH2 + 2LiBH4 reactive hydride composite. The selected additives have been previously demonstrated to significantly improve the sorption reaction kinetics in the corresponding materials. X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (TEM) analysis were carried out for the milled and cycled samples in absence or presence of the additives. It has been shown that although the evolution of the oxidation state for both Nb- and Ti-species are similar in both systems, the Nb additive is performing its activity at the surface while the Ti active species migrate to the bulk. The Nb-based additive is forming pathways that facilitate the diffusion of hydrogen through the diffusion barriers both in desorption and absorption. For the Ti-based additive in the reactive hydride composite, the active species are working in the bulk, enhancing the heterogeneous nucleation of MgB2 phases during desorption and producing a distinct grain refinement that favours both sorption kinetics. The results are discussed in regards to possible kinetic models for both systems.  相似文献   

20.
Mg50Ni-LiBH4 and Mg50Ni-LiBH4-CeCl3 composites have been prepared by short times of ball milling under argon atmosphere. Combination of HP-DSC and volumetric techniques show that Mg50Ni-LiBH4-CeCl3 composite not only uptakes hydrogen faster than Mg50Ni-LiBH4, but also releases hydrogen at a lower temperature (225 °C). The presence of CeCl3 has a catalytic role, but it does not modify the thermodynamic properties of the composite which corresponds to MgH2. Experimental studies on the hydriding/dehydriding mechanisms demonstrate that LiBH4 and Ni lead to the formation of MgNi3B2 in both composites. In addition, XRD/DSC analysis and thermodynamic calculations demonstrate that the addition of CeCl3 accounts for the enhancement of the hydrogen absorption/desorption kinetics through the interaction with LiBH4. The in situ formation and subsequent decomposition of Ce(BH4)3 provides a uniform distribution of nanosize CeB4 compound, which plays an important role in improving the kinetic properties of MgH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号