首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hydrogen on the tensile properties and fracture characteristics was investigated in the quenching & partitioning (Q&P) treated high strength steel with a considerable amount of retained austenite. Slow strain-rate tensile (SSRT) tests and fractographic analysis on cathodically charged specimens were performed to evaluate the hydrogen embrittlement (HE) susceptibility. Total elongation was dramatically deteriorated from 19.5% to 2.5% by introducing 1.5 ppmw hydrogen. Meanwhile, hydrogen caused a transition from ductile microvoid coalescence to a mixed morphology of dimples, “quasi-cleavage” regions and intergranular facets. Moreover, hydrogen trapping sites were directly observed by means of three-dimensional atom probe tomography (3DAPT). Results have shown that hydrogen in austenite (33.9 ppmw) is 3 times more soluble than that in martensite (10.7 ppmw). By using DENT specimen, hydrogen-induced cracking (HIC) cracks were found to initiate at martensite/austenite interfaces and then propagate through retained austenite and martensite. No crack was observed to be initiating from ferrite phase.  相似文献   

2.
Hydrogen embrittlement remains a barrier to widespread adoption of hydrogen as a carbon-neutral energy source. Here, hydrogen embrittlement mechanisms are investigated across length scales in iron using transmission X-ray microscopy (TXM), digital image correlation (DIC), and notched tensile testing during in-situ electrochemical hydrogen charging. TXM reveals void size and spatial distribution ahead of a propagating crack. We find hydrogen charging leads to voids within ~10 μm of the crack tip and suppression of voids beyond this distance. Near the crack tip, voids are elongated in the direction of the crack and are smaller than voids in an uncharged sample. In the presence of hydrogen, these voids lead to quasi-cleavage fracture and a sharper crack tip. DIC shows localization and reduction of plastic strain with hydrogen charging, and tensile testing reveals a reduction in fracture energy and elongation at failure. These results are discussed in the context of hydrogen embrittlement mechanisms.  相似文献   

3.
To investigate the evaluation method of hydrogen compatibility of A286 superalloy in high pressure hydrogen gas, SSRT tests of hydrogen-charged specimens were conducted at ambient temperature at various strain rates. The relative reduction in area (RRA), one of the ductility parameters, was determined. The hydrogen content in the hydrogen-charged specimen was the same as the equilibrium hydrogen content on the specimen surface at 150 °C in 70 MPa hydrogen gas. The strain rate dependence of RRA was smaller than that of RRA obtained in 70 MPa hydrogen gas at 150 °C. All the hydrogen-charged specimens showed slip-plane fractures in the grains in their cores. However, the specimens in 70 MPa hydrogen gas at 150 °C showed fracture surfaces morphology ranging from dimples to quasi-cleavages and intergranular fractures with decreasing strain rate. These dissimilarities are expected to arise from differences in the hydrogen concentration behaviors of the specimens during the deformation process.  相似文献   

4.
The effects of hydrogen gas pressure and prior austenite grain size (PAGS) on the susceptibility of a 22MnB5 press-hardened martensitic steel (PHS) to hydrogen embrittlement were studied. The hydrogen test apparatus at NIST-Boulder was modified for tensile testing of plate-type and sheet-type specimens in gaseous hydrogen. This modification made it possible to evaluate the slow strain rate tensile (SSRT) properties of the PHS with three different PAGS at various hydrogen pressures (0.21 MPa–5.5 MPa). SSRT testing in gaseous hydrogen resulted in significant reductions of both the tensile strength and ductility, as compared to those measured in air. In addition, the presence of gaseous hydrogen resulted in a transition in fracture morphology from the near-45° slant fracture to a more brittle fracture along a plane perpendicular to the tensile axis. The hydrogen-affected fracture zones were connected to the sheet specimen free surfaces, signifying the effect of external hydrogen. The fracture surfaces of the hydrogen-embrittled specimens contained relatively flat, “cleavage-like” facets, the size of which depended on the PAGS or packet size. The PHS having the largest PAGS represented generally larger secondary cracks and straighter crack paths in addition to a greater area fraction of the “cleavage-like” facets, likely indicative of a lower frequency of crack deflections. Compared to the largest PAGS condition, the two PHS with smaller PAGS were more resistant to the hydrogen-induced fracture especially at relatively low hydrogen gas pressures (<0.52 MPa). In contrast, with an increase in hydrogen pressure, all PHS specimens exhibited significant decreases in tensile strength and ductility. The positive effect of refining martensitic microstructure, at the low hydrogen pressures, is likely associated with improved toughness of the smaller grain-sized specimens.  相似文献   

5.
A hydrogen-charged Type-316L austenitic stainless steel represents a slight loss of tensile ductility and cup-and-cone fracture accompanied by small-sized dimple. The reduction in the dimple size is interpreted to be attributed to void sheets caused by localized slip deformations by hydrogen. This paper aims to clarify the contribution of an internal pressure to the characteristic void growth of a hydrogen-charged Type-316L stainless steel during slow strain rate tensile (SSRT) test in air at room temperature. The internal pressure of pre-existing voids in the specimen charged by 100 MPa hydrogen gas at 270 °C for 200 h was simulated by diffusion-desorption analysis of hydrogen with the finite differential method (FDM). The subsequent impact of the internal pressure on the void growth was simulated by fracture-mechanics approach with the finite element method (FEM). The simulations performed under various void morphologies and fracture toughness suggested that the internal pressure in the voids was significantly low, hardly affecting the void growth.  相似文献   

6.
Tempering temperatures ranging between 500 and 720 °C were applied in order to analyse the relationship between steel microstructure and the deleterious effect of hydrogen on the fracture toughness of different CrMo and CrMoV steels. The influence of hydrogen on the fracture behaviour of the steel was investigated by means of fracture toughness tests using CT specimens thermally pre-charged with hydrogen gas.First, the specimens were pre-charged with gaseous hydrogen in a pressurized reactor at 19.5 MPa and 450 °C for 21h and elasto-plastic fracture toughness tests were performed under different displacement rates. The amount of hydrogen accumulated in the steel was subsequently determined in order to justify the fracture toughness results obtained with the different steel grades. Finally, scanning electron microscopy was employed to study both the resulting steel microstructures and the fracture micromechanisms that took place during the fracture tests.According to the results, hydrogen solubility was seen to decrease with increasing tempering temperature, due to the fact that hydrogen microstructural trapping is lower in relaxed martensitic microstructures, the strong effect of the presence of vanadium carbides also being noted in this same respect. Hydrogen embrittlement was also found to be much greater in the grades tempered at the lowest temperatures (with higher yield strength). Moreover, a change in the fracture micromechanism, from ductile (microvoid coalescence, MVC), in the absence of hydrogen, to intermediate (plasticity-related hydrogen induced cracking, PRHIC) and brittle (intergranular fracture, IG), was appreciated with the increase in the embrittlement indexes.  相似文献   

7.
Cr–Mo steel is often used as the material of the hydrogen storage vessel, but its ductility can be deteriorated by high pressure hydrogen, which makes it possible that the local area of strain concentration on the hydrogen storage vessel made of Cr–Mo steel may fail due to excessive plastic deformation. The limit criterion of local strain established according to the study of the fracture strain is the basis for local failure assessment of the vessel. However, the correlation between the fracture strain and the stress state of Cr–Mo steel in high pressure hydrogen is still unclear, so the limit criterion of local strain for hydrogen storage vessel made of Cr–Mo steel has not been established. In this paper, the slow strain rate tensile test (SSRT) of notched specimens with different notch sizes was carried out in air, 45 MPa hydrogen and 100 MPa hydrogen, respectively. Based on the test results, the whole process from tensile to fracture of the specimens was simulated by finite element method. The distribution of stress triaxiality and plastic strain during the tensile process was analyzed, and the correlations between the stress triaxiality and the fracture strain in different environments were obtained. Finally, the limit criterion of local strain for local failure assessment of 4130X hydrogen storage vessel was established.  相似文献   

8.
The present work aims to investigate the role of hydrogen induced blisters cracking on degradation of tensile and fatigue properties of X65 pipeline steel. Both tensile and fatigue specimens were electrochemically charged with hydrogen at 20 mA/cm2 for a period of 4 h. Hydrogen charging resulted in hydrogen induced cracking (HIC) and blister formation throughout the specimen surface. Nearly all the blisters formed during hydrogen charging showed blister wall cracking (BWC). Inclusions mixed in Al-Si-O were found to be the potential sites for HIC and BWC. Slow strain rate tensile (SSRT) test followed by fractographic analysis confirmed significant hydrogen embrittlement (HE) susceptibility of X65 steel. Short fatigue crack growth framework, on the other hand, specifically highlighted the role of BWC on accelerated crack growth in the investigated material. Coalescence of propagating short fatigue crack with BWC resulted in rapid increase in the crack length and reduced the number of cycles for crack propagation to the equivalent crack length.  相似文献   

9.
Hydrogen embrittlement of a nickel-based superalloy IN718 was investigated using slow strain rate tensile tests. Post-mortem observation of fractured samples was performed to explore hydrogen-assisted failure mechanisms of the alloy. The results reveal that hydrogen charging reduces yield strength, tensile strength, fracture strain and work hardening rate. With increasing current density, yield strength and tensile strength reduce linearly and fracture strain decreases exponentially. Furthermore, the crack initiation and propagation in hydrogen-charged region depends on the distribution of δ phase in the alloy. For needle-shaped δ phase within the grains, the nucleation of voids takes place at the intersections between dislocation slip bands and δ phase due to the hydrogen-enhanced localized plasticity (HELP)-assisted shear localization and possible hydrogen agglomeration. For δ phase along the grain boundaries, the impingement of slip bands and local hydrogen accumulation at γ-matrix/δ phase interfaces as well as hydrogen-enhanced decohesion (HEDE)-assisted decohesion lead to the void nucleation at the interfaces. Because of the decoration of δ phase at the grain boundaries, hydrogen-assisted cracking preferentially propagates along the grain boundaries. It is hence suggested that the synergistic interplay of HELP mechanism and HEDE mechanism can be used to explain the embrittlement of the alloy.  相似文献   

10.
The coarse grain heat affected zone (CG-HAZ) of welds produced in a quenched and tempered 42CrMo4 steel was simulated by means of a laboratory heat treatment consisting in austenitizing at 1200 °C for 20 min, oil quenching and finally applying a post weld heat treatment at 700 °C for 2 h (similar to the tempering treatment previously applied to the base steel). A tempered martensite microstructure with a prior austenite grain size of 150 μm and a hardness of 230 HV, similar to the aforementioned CG-HAZ weld region, was produced. The effect of the prior austenite grain size on the hydrogen embrittlement (HE) behaviour of the steel was studied comparing this coarse-grained microstructure with that of the fine-grained base steel, with a prior austenite grain size of 20 μm.The specimens used in this study were charged with hydrogen gas in a reactor at 19.5 MPa and 450 °C for 21 h. Cylindrical specimens were used to determine hydrogen uptake and hydrogen desorption behaviour. Smooth and notched tensile specimens tested under different displacement rates were also used to evaluate HE.Embrittlement indexes, EI, were generally quite low in the case of hydrogen pre-charged tensile tests performed on smooth tensile specimens. However, very significant embrittlement indexes were obtained with notched tensile specimens. It was observed that these indexes always increase as the applied displacement rate decreases. Moreover, hydrogen embrittlement indexes also increase with increasing prior austenite grain size. In fact, the embrittlement index related to the reduction in area, EI(RA), reached values of over 20% and 50% for the fine and coarse grain size steels, respectively, when tested under the lowest displacement rates (0.002 mm/min).A comprehensive fractographic analysis was performed and the main operative failure micromechanisms due to the presence of internal hydrogen were determined at different test displacement rates. While microvoids coalescence (MVC) was found to be the typical ductile failure micromechanism in the absence of hydrogen in the two steels, brittle decohesion mechanisms (carbide-matrix interface decohesion, CMD, and martensitic lath interface decohesion, MLD) were observed under internal hydrogen. Intergranular fracture (IG) was also found to be operative in the case of the coarse-grained steel tested under the lowest displacement rate, in which hydrogen accumulation in the process zone ahead of the notch tip is maximal.  相似文献   

11.
The influence of hydrogen on the mechanical behaviour of a 42CrMo4 tempered martensitic steel was investigated by means of tensile tests on both smooth and circumferentially-notched round-bar specimens pre-charged with gaseous hydrogen in a pressurized reactor.Hydrogen solubility was seen to decrease with increasing tempering temperature. Moreover, hydrogen embrittlement measured in notched specimens was much greater in the grades with higher hardness, tempered at the lowest temperatures, where a change in the fracture micromechanism from ductile in the absence of hydrogen to intermediate and brittle in the presence of hydrogen was clearly observed. Results were discussed through FEM simulations of local stresses acting on the process zone.  相似文献   

12.
We study the effect of grain size of austenitic and ferritic phases and volume fraction of δ-ferrite, which were obtained in different solution-treatment regimes (at 1050, 1100, 1150 and 1200 °C), on hydrogen embrittlement of high-nitrogen steel (HNS). The amount of dissolved hydrogen is similar for the specimens with different densities of interphase (γ-austenite/δ-ferrite) and intergranular (γ-austenite/γ-austenite, δ-ferrite/δ-ferrite) boundaries. Despite, the susceptibility of the specimens to hydrogen embrittlement, depth of the hydrogen-assisted surface layers, hydrogen transport during tensile tests and mechanisms of the hydrogen-induced brittle fracture all depend on grain size and ferrite content. The highest hydrogen embrittlement index IH = 32%, the widest hydrogen-affected layer and a pronounced solid-solution hardening by hydrogen atoms is typical of the specimens with the lowest fraction of the boundaries. Even though fast hydrogen transport via coarse ferritic grains provides longer diffusion paths during H-changing, the width of the H-affected surface layer in the dual-phase structure of the HNS specimens is mainly determined by the hydrogen diffusivity in austenite. In tension, hydrogen transport with dislocations increases with the decrease in density of boundaries due to the longer dislocation free path, but stress-assisted diffusion transport does not depend on grain size and ferrite fraction. The contribution from intergranular fracture increases with an increase in the density of intergranular and interphase boundaries.  相似文献   

13.
The present work investigates the influence of hydrogen on the mechanical properties of four multiphase high strength steels by means of tensile tests on notched samples. This was done by performing mechanical tests on both hydrogen charged and uncharged specimens at a cross-head displacement speed of 5 mm/min. A considerable hydrogen influence was observed, as the ductility dropped by 8–60%. In order to demonstrate the influence of diffusible hydrogen, some parameters in the experimental set-up were varied. After tensile tests, fractography was performed. It was found that hydrogen charging caused a change from ductile to transgranular cleavage failure near the notch with a transition zone to a fracture surface with ductile features near the centre.  相似文献   

14.
The microstructure and the effects of 10 MPa hydrogen atmosphere on the tensile properties of a oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel were investigated. The microstructure consists of a fine grained ferritic matrix with Me3O4 (Me = Cr, Fe or Mn), VN and Cr23C6 grain boundary precipitates as well as dispersed yttrium oxide nano precipitates in the ferritic matrix. The yield and ultimate tensile strength were unaffected by the H2 atmosphere whereas elongation at fracture and reduction in area were markedly reduced. In H2 atmosphere, the fracture morphology was found to be a mixture of intergranular H-assisted fracture and a smaller amount of transgranular hydrogen enhanced localized plasticity (HELP) fracture. The sensitivity of the ODS RAF steel to hydrogen embrittlement is attributed to the large number grain boundary precipitates which enhance the tendency for intergranular fracture.  相似文献   

15.
The susceptibility to hydrogen embrittlement behavior was investigated in an interstitial Mn–N austenitic steel HR183 and stainless steel 316L. Hydrogen was introduced by cathodic hydrogen charging at 363 K. HR183 has stronger austenite stability than 316L despite its lower nickel content, the addition of manganese and nitrogen inhibited martensitic transformation during the slow strain rate tensile deformation. Due to the diffusion of hydrogen being delayed by the interstitial solution of nitrogen atoms and the uniform dislocation slips, hydrogen permeates more slowly in HR183 than 316L, contributing to an 84.79 μm thinner brittle fracture layer in HR183 steel. Hydrogen charging caused elongation losses in both 316L and HR183 steels associated with the hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) mechanism. However, the hydrogen embrittlement susceptibility of HR183 is 3.4 times lower than that of 316L according to the difference in elongation loss between the two steel after hydrogen charging. Deformation twins trapped a lot amount of hydrogen leading to brittle intergranular fracture in 316L. The multiple directions of slip in HR183 steel suppressed the strain localization inside grains and delayed the adverse effects conducted by HELP and HEDE mechanism, eventually inhibiting server hydrogen embrittlement in the HR183 steel. This study is assisting in the development of low-cost stainless steel with excellent hydrogen embrittlement resistance that can be used in harsh hydrogen-containing environments.  相似文献   

16.
The influence of hydrogen uptake on the microstructure and mechanical properties of swaged Gum metal rods was investigated. The Gum metal rod absorbed hydrogen under moderate hydrogen pressure at elevated temperatures. For a hydrogen content (hydrogen to metal ratio H/M) of 0.2 < H/M < 0.4, marked grain refinement was observed, and the strain-to-failure increased beyond that of a swaged specimen while maintaining yield stress and ultimate tensile strength. Since grain refinement was not observed in recrystallized specimens, it was deduced that lattice defects induced during the swaging process play an important role in grain refinement with charged hydrogen. The ductile-to-brittle transition of the fracture mode was observed at H/M > 0.4.  相似文献   

17.
Hydrogen embrittlement of a precipitation-hardened Fe–26Mn–11Al-1.2C (wt.%) austenitic steel was examined by tensile testing under hydrogen charging and thermal desorption analysis. While the high strength of the alloy (>1 GPa) was not affected, hydrogen charging reduced the engineering tensile elongation from 44 to only 5%. Hydrogen-assisted cracking mechanisms were studied via the joint use of electron backscatter diffraction analysis and orientation-optimized electron channeling contrast imaging. The observed embrittlement was mainly due to two mechanisms, namely, grain boundary triple junction cracking and slip-localization-induced intergranular cracking along micro-voids formed on grain boundaries. Grain boundary triple junction cracking occurs preferentially, while the microscopically ductile slip-localization-induced intergranular cracking assists crack growth during plastic deformation resulting in macroscopic brittle fracture appearance.  相似文献   

18.
Hydrogen Induced Cracking (HIC) in carbon steels is a well-studied mechanism, where diffusing hydrogen atoms accumulates at the steel imperfections/laminations to create gaseous hydrogen with very high pressure, leading to initiation and growth of internal cavities, so-called HIC. Measurements of relevant fracture toughness properties of non-HIC resistant steels in hydrogen environment is critical to predict and assess the initiation and growth of HIC. The present work attempts to quantify the effect of hydrogen on the fracture toughness properties (KQ and CTOD) of an API X42 pipeline steel under simulated H2S in-service conditions. The fracture toughness properties are measured in TL and SL directions: perpendicular and parallel to the pipeline wall thickness, respectively, following ASTM E1820, standard. Since the X42 is a non-HIC resistant steel, the measurement of the fracture toughness properties in the SL direction is more relevant in terms of HIC initiation and growth than fracture toughness properties in the TL direction. Indeed, parallel to the thickness of the pipeline wall, X42 steel shows microstructural features prone to HIC formation and growth. Steady state H2S in-service conditions were simulated by charging the specimen for 48 h using a special electrolytic solution and then tested (ex-situ) to evaluate the fracture toughness properties. The steady state H2S environment was obtained by measuring the Hydrogen Concentration (CH) in the bulk of the specimen, using Thermal desorption Spectroscopy at three levels of CH. It was observed that the KQ was not affected in the SL direction, while it was reduced in the TL direction for 1.5 ppmw of CH. The CTOD showed mixed results in the TL direction while it was significantly reduced in the SL direction reaching a saturation at 1 ppmw of CH. Besides, microstructural analyses showed that the presence of inclusions coalescence in form of dimples promote the early failure, which is more pronounced in the hydrogen environment especially at higher levels of CH.  相似文献   

19.
High Mn twinning-induced plasticity (TWIP) steels are attractive for high performance applications owing to their extraordinary ductility at a giga-graded tensile strength level. Hydrogen delayed fracture (HDF) came to the fore as a key issue to be solved for the application of these steels. Although it was found that Al addition improved the resistance to HDF, the reason was unclear. Therefore, in this study, the fracture surfaces of annealed and hydrogen-charged TWIP steels with different Al contents were examined after slow strain rate tensile tests. Diffusible hydrogen was measured by thermal desorption analysis. It found that the strong resistance to HDF was due to an α-Al2O3 layer formed below the (Fe0.8Mn0.2)O layer during the hydrogen charging in an aqueous solution prevented the hydrogen to permeate into specimens from the surface.  相似文献   

20.
The aim of this paper is to study the effect of the displacement rate on the fracture toughness under internal hydrogen of two different structural steels grades used in energy applications. To this end, steel specimens were pre-charged with gaseous hydrogen at 19.5 MPa and 450 °C for 21 h and then fracture toughness tests were carried out in air at room temperature. Permeation experiments were also conducted to obtain the hydrogen diffusion coefficients of the steels. It was observed that the lower the displacement rate and the higher the steel yield strength, the stronger the reduction in fracture toughness due to the presence of internal hydrogen. A change in the fracture micromechanism was also detected. All these findings were justified in terms of hydrogen diffusion and accumulation in the crack front region in the different steel specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号