首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, controlling an anaerobic microbial community to increase the hydrogen (H2) yield during the degradation of lignocelluosic sugars was accomplished by adding linoleic acid (LA) at low pH and reducing the hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR). At pH 5.5 and a 1.7 d HRT, the maximum H2 yield for LA treated cultures fed glucose or xylose reached 2.89 ± 0.18 mol mol−1 and 1.94 ± 0.17 mol mol−1, respectively. The major soluble metabolites at pH 5.5 with a 1.7 day HRT differed between the control and LA treated cultures. A metabolic shift toward H2 production resulted in increased hydrogenase activity in both the xylose (13%) and glucose (34%) fed LA treated cultures relative to the controls. In addition, the Clostridia population and the H2 yield were elevated in cultures treated with LA. A flux balance analysis for the LA treated cultures showed a reduction in homoacetogenic activity which was associated with reducing the Bacteriodes levels from 12% to 5% in the glucose fed cultures and 16% to 10% in the xylose fed cultures. Strategies for controlling the homoacetogens and optimal hydrogen production from glucose and xylose are proposed.  相似文献   

2.
The effects of furans (furfural and 5-hydroxymethylfurfural (HMF)) on hydrogen (H2) production using mixed anaerobic cultures were evaluated by conducting batch experiments. Two mixed anaerobic cultures (culture A and B) fed furans plus glucose and treated with and without linoleic acid (LA) at pH 5.5 were maintained at 37 °C. In the LA inhibited cultures A and B fed 0.75 g L−1 furfural and 0.25 g L−1 HMF, the maximum H2 yields observed were 1.89 ± 0.27 mol mol−1 glucose and 1.75 ± 0.22 mol mol−1 glucose, respectively. In cultures with maximum H2 yields, Clostridium sp. and Flavobacterium sp. were dominant. Acetate, butyrate and ethanol were the major soluble metabolites detected in cultures A and B whereas propionate was also dominant in culture B. A canonical correspondence analysis based on the byproducts and the relative abundance of the terminal-restriction fragments revealed less variation between cultures treated with LA and low correlation value between the factors and the species composition.  相似文献   

3.
The effects of lauric (LUA), myristic (MA), palmitic (PA), and a mixture of myristic:palmitic (MA:PA) acids on hydrogen (H2) production from glucose degradation using anaerobic mixed cultures were assessed at 37 °C with an initial pH set at 5.0 and 7.131 mM of each acid. The maximum H2 yield (2.53 ± 0.18 mol mol−1 glucose) was observed in cultures treated with PA. A principal component analysis (PCA) of the by-products and the microbial population data sets detected similarities between the controls and PA treated cultures; however, differences were observed between the controls and PA treated cultures in comparison to the MA and LUA treated cultures. The flux balance analysis (FBA) showed that PA decreased the quantity of H2 consumed via homoacetogenesis compared to the other LCFAs. The control culture was dominated by Thermoanaerovibrio acidaminovorans (60%), Geobacillus sp. and Eubacterium sp. (28%), while Clostridium sp. was less than 1%. Treatment with PA, MA, MA:PA, or LUA increased the H2 producers (Clostridium sp. and Bacillus sp.) population by approximately 48, 67, 86, and 86%, respectively.  相似文献   

4.
Bio-hydrogen production from food waste by anaerobic mixed cultures was conducted in a continuous stirred tank reactor (CSTR). The hydraulic retention time (HRT) was optimized in order to maximize hydrogen yield (HY) and hydrogen production rate (HPR). The maximum hydrogen content (38.6%), HPR (379 mL H2/L. d) and HY (261 mL H2/g-VSadded) were achieved at the optimum HRT of 60 h. The major soluble metabolite products were butyric and acetic acids which indicated a butyrate-acetate type fermentation. Operation of CSTR at HRT 60 h could select hydrogen producing bacteria and eliminate lactic acid bacteria and acetogenic bacteria. The microbial community analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that the predominant hydrogen producer was Clostridium sp.  相似文献   

5.
Hydrogen (H2) production using mixed anaerobic cultures often suffers severe yield reduction due to the syntrophic association between H2 consumers (methanogens and homoacetogens) and H2 producers (acidogens). The objective of this study was to uncouple the syntrophic association between H2 producers and consumers by optimizing conditions for minimum H2 consumption using a Box–Behnken design approach. The factors investigated in this study include temperature, pH and linoleic acid (LA) concentration. A quadratic response surface model was developed to predict the H2 consumed by mixed anaerobic cultures and the optimum conditions for minimum H2 consumption were 38 °C, pH 5.5 and 2 g L−1 LA. Methanogenesis was inhibited in cultures fed 2 g L−1 LA and maintained at pH 6.0 and 53 °C. In comparison, both methanogenesis and homoacetogenesis were inhibited in cultures fed 1–2 g L−1 LA and maintained at a pH of 4.5 (Fig. 2B and 2E and Table 2 Expt. # 1, 2 and 11). Microbial diversity analysis revealed that LA fed cultures was dominated by spore forming Clostridium sp. in addition to Syntrophus aciditrophus. In comparison, control cultures were dominated by Eubacterium sp., Methanocalculus halotolerans and Methanococcoides alaskense. This study described an approach for regulating H2 consumption in mixed cultures by optimizing process and environmental factors. Understanding the effects of these individual factors and their interaction is important in the full-scale operation of H2 production facilities.  相似文献   

6.
Continuous H2 production from xylose by granules and biofilm up-flow anaerobic reactor using moderate thermophilic mixed cultures was investigated. The maximum H2 yield of 251 mL H2/g-xylose with H2production rate of 15.1 L H2/L⋅d was obtained from granules reactor operating at the organic loading rate (OLR) of 60 g-xylose/L⋅d and hydraulic retention time (HRT) of 4 h. Meanwhile the highest H2 production rate of 13.3 L H2/L⋅d with an H2 yield of 221 mL H2/g–xylose was achieved from the biofilm reactor. Both reactors were dominated by Thermoanaerobacterium species with acetate and butyrate as main fermentation products. The microbial community of the biofilm reactor was composed of Thermoanaerobacterium species, while granules reactor was composed of Clostridium sp., Thermoanaerobacterium sp. and Caloramator sp. The granular reactor was more microbial diversity and more balance between economic efficiency in term of the hydrogen production rate and technical efficiency in term of hydrogen yield.  相似文献   

7.
In this study, the operation of an upflow anaerobic sludge blanket reactor (UASBR) producing hydrogen (H2) from a steam-exploded switchgrass (SWG) liquor was statistically optimized. The factors consider included pH, hydraulic retention time (HRT) and linoleic acid (LA) concentration. Under optimal operational conditions (pH 5.0, 10 h HRT and 1.75 g L−1 LA), which were close to the predicted conditions using the D-optimality index, the maximum H2 and methane yield observed were 99.86 ± 5.6 mL g−1 TVS and 0.5 ± 0.1 mL g−1 TVS, respectively. Under maximum H2-producing conditions, high levels of acetate plus butyrate were observed with low levels of ethanol and lactate. A principal component analysis revealed that clustering of the samples was based on the operating conditions and fermentation metabolites. The microbial profiles revealed that by lowering the HRT from 16 to 8 h or decreasing the pH from 7.0 to 5.0 in the controls caused a 50% reduction in the relative abundance of the terminal restriction fragments belonging to the methanogenic population (Methanobacteria, Methanomicrobia, Methanococci). With LA treatment, H2 producers (Ruminococcaceae and Clostridiaceae) were dominant and methanogens were inhibited and/or washed-out from the UASBR.  相似文献   

8.
The impact of different chemical microbial stressors (2-bromoethanesulfonate (BES), furfural, fish oil, lauric acid (LUA) and linoleic acid (LA)) on the inhibition of mesophilic hydrogen (H2) consumption was examined in this study. Hydrogen consumption half-life values were used to compare the extent of inhibition by the different microbial stressing agents. A statistical analysis of the percent H2 consumed using Tukey's analysis revealed the following trend: Control > fish oil = linoleic acid (LA (C18:2)) = furfural > BES > lauric acid (LUA (C12:0). The terminal restriction fragment length polymorphism (T-RLFP) results indicated that aceticlastic methanogens (Methanosaeta sp., Methanosarcina sp.) and hydrogenotrophic methanogens (Methanococcus sp.) were inhibited by the different chemical stressing agents. Cultures fed LUA and LA had a high abundance of Clostridium sp., Clostridium propionicum and Propionibacterium acnes. In comparison, BES and furfural fed cultures contained large fractions of Clostridium sp., Eubacteria sp. and Bacteroides sp. while in the fish oil fed cultures, the dominant organism detected was Eubacteria sp. This study indicated that H2 consumption was affected by the chemical stressing agent concentration.  相似文献   

9.
Batch and continuous modes for bio-hydrogen production by co-digesting cassava starch wastewater with buffalo dung were investigated. Response surface methodology with central composite design was used to optimize the bio-hydrogen production conditions. A hydrogen production potential of 1787 mL H2/L was achieved under optimal conditions of 2.84 g/L of NaHCO3, an initial pH of 6.77 and a total chemical oxygen demand (tCOD)/total nitrogen ratio of 42.36. A continuous stirred tank reactor was operated under the optimum conditions from batch mode to investigate the effects of hydraulic retention time (HRT) of 72, 60 and 48 h on hydrogen production. The highest hydrogen content, hydrogen production rate and hydrogen yield of 33%, 839 mL H2/L.d and 16.90 mL H2/g-CODadded, respectively, were achieved at a HRT of 60 h. The predominant hydrogen producer under the optimal conditions in batch mode was Clostridium sp. while Clostridium sp., Megasphaera sp. and Chloroflexi sp. were observed in the continuous hydrogen production mode at an optimal HRT.  相似文献   

10.
In this study, fermentation of a thermally treated simulated organic solid waste into hydrogen (H2) was examined using a pretreated anaerobic mixed culture. The culture was fed a steam exploded food waste plus paper-cardboard waste blend liquor with and without linoleic acid (LA). The individual and interaction effects of the initial pH, LA concentration and the initial chemical oxygen demand (COD) concentration on H2 and methane (CH4) production was assessed using a Box–Behnken design (BBD). The BBD model predicted a maximum H2 yield of 87 mL g−1 COD or 98 mL H2 g−1 VS with 1.6 g L−1 LA, an initial pH of 5.93 and an initial COD of 9.34 g COD L−1. The major microbial populations detected in cultures at pH 5.5 with and without LA included Clostridium sp., Enterococcus asini, Enterococcus faecalis, and Lactobacillus gallinarum. The dendrogram for the 16S rRNA gene T-RFs profiles showed four major groups with a similarity index of 72–75% for Clade III. The major H2-producing populations were grouped in Clade I with a similarity index range of 55–75%.  相似文献   

11.
Efficient conversion of glycerol waste from biodiesel manufacturing processes into biohydrogen by the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 was investigated. Biohydrogen production by T. neapolitana was examined using the batch cultivation mode in culture medium containing pure glycerol or glycerol waste as the sole substrate. Pre-treated glycerol waste showed higher hydrogen (H2) production than untreated waste. Nitrogen (N2) sparging and pH control were successfully implemented to maintain the culture pH and to reduce H2 partial pressure in the headspace for optimal growth rate and to enhance hydrogen production from the glycerol waste. It was found that hydrogen production increased from 1.24 ± 0.06 to 1.98 ± 0.1 mol-H2 mol−1 glycerolconsumed by optimising N2 sparging and pH control. We observed that in medium containing 0.05 M HEPES, with three cycles of N2 sparging, the H2 yield increased to 2.73 ± 0.14 mol-H2 mol−1 glycerolconsumed, which was 2.22-fold higher than the non-N2 sparged H2 yield (1.23 ± 0.06 mol-H2 mol−1 glycerolconsumed).  相似文献   

12.
In this study, granular and flocculated anaerobic mixed cultures were pretreated using heat, shock loading, acid, alkali, linoleic acid (LA) and 2-bromoethane sulphonic acid (BESA). Under mesophilic conditions (37 °C) and an initial pH value of 6.0, higher H2 yields were observed for the flocculated cultures when compared to the granular cultures. The maximum yield for granular cultures treated acid, BESA or LA were statistically the same. Butyric acid fermentation was dominant in a majority of the treated cultures. The maximum hydrogenase evolution specific activity (ESA) (124 ± 8 Ue mg VSS−1) at 37 °C correlated with the maximum H2 yield for the LA treated flocculated cultures (1.69 ± 0.18 mol mol−1 glucose). The microbial diversity data clearly showed that the low H2 yield in the granular cultures was due to the lower proportion of H2 producers. A principle component analysis (PCA) revealed that the LA treated flocculated and granular cultures were grouped together and showed more diversity in comparison to other pretreatment methods.  相似文献   

13.
In this study, hydrogen (H2) production from the fermentation of steam exploded corn stalk (CS) liquor was statistically optimized using a fractional factorial design approach. The factors under consideration included temperature, pH and hydraulic retention time (HRT). Under optimal conditions at 53 °C, a pH at 4.5 and a 9.5 h HRT, the observed maximum H2 yield of 98 ± 2 mL g−1 TVS together with negligible CH4 were similar to the model predicted responses. A flux analysis revealed negligible homoacetogenic activity in cultures at 53 °C and low pH (≤5.5). Both homoacetogenic (R17) and methanogenic (R28 and R29) fluxes accounted for more than 68–90% of H2 consumption in cultures at low temperatures. The low H2 yields observed in cultures maintained at 21 °C and 37 °C was associated with high lactate and solvent levels. High H2 yields in cultures at 53 °C were associated with a higher abundance of Clostrdium sp. and CH4 production at low temperatures was due to the presence of hydrogenotrophic methanogens (Methanothermobacter marburgensis and Methanobrevibacter ruminatum) and aceticlastic methanogens (Methanosaeta sp. and Methanosarcina sp.). The results obtained from this study (within the factor ranges investigated) indicated that steam exploded CS liquor could be a potential substrate for H2 production using mixed microbial cultures.  相似文献   

14.
Genomic and statistical methods were used to demonstrate the effects of linoleic acid (LA) on hydrogen (H2) production in mixed anaerobic cultures from two sources (designated as A and B). The microbial composition of the control cultures CA and CB were statistically different. Bacteroidaceae (26%) and Clostridiaceae (10%) dominated CA whereas Clostridiaceae (33%) and Bacteroidaceae (10%) dominated CB. Homoacetogens directed 42% of the electron equivalents to acetate production and decreased the H2 yield by 50% in CA compared to CB. The maximum H2 yields (3.11 ± 0.02 and 3.11 ± 0.07 mol H2 mol−1 glucose in LA-treated cultures ALA and BLA, respectively) were statistically the same. Cultures ALA and BLA followed the acetate-butyrate pathway while CA and CB followed propionate and homoacetogenic pathways. LA-treated and control cultures were statistically different based on the type and quantity of metabolites; the differences were also confirmed by principal component analysis (PCA).  相似文献   

15.
The objective of this study was to optimize the culture conditions for simultaneous saccharification and fermentation (SSF) of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung under thermophilic temperature. Carboxymethyl cellulose (CMC) was used as the model substrate. The investigated parameters included initial pH, temperature and substrate concentration. The experimental results showed that maximum hydrogen yield (HY) and hydrogen production rate (HPR) of 7.22 ± 0.62 mmol H2/g CMCadded and 73.4 ± 3.8 mL H2/L h, respectively, were achieved at an initial pH of 7.0, temperature of 55 °C and CMC concentration of 0.25 g/L. The optimum conditions were then used to produce hydrogen from the cellulose fraction of sugarcane bagasse (SCB) at a concentration of 0.40 g/L (equivalent to 0.25 g/L cellulose) in which an HY of 7.10 ± 3.22 mmol H2/g celluloseadded. The pre-dominant hydrogen producers analyzed by polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) were Thermoanaerobacterium thermosaccharolyticum and Clostridium sp. The lower HY obtained when the cellulose fraction of SCB was used as the substrate might be due to the presence of lignin in the SCB as well as the presence of Lactobacillus parabuchneri and Lactobacillus rhamnosus in the hydrogen fermentation broth.  相似文献   

16.
This study evaluated hydrogen production and chemical oxygen demand removal (COD removal) from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). The ABR was conducted based on the optimum condition obtained from the batch experiment, i.e. 2.25 g/L of FeSO4 and initial pH of 9.0. The effects of the varying hydraulic retention times (HRT: 24, 18, 12, 6 and 3 h) on hydrogen production and COD removal in a continuous ABR were operated at room temperature (32.3 ± 1.5 °C). Hydrogen production rate (HPR) increased with a reduction in HRT i.e. from 164.45 ± 4.14 mL H2/L.d (24 h HRT) to 883.19 ± 7.89 mL H2/L.d (6 h HRT) then decreased to 748.54 ± 13.84 mL H2/L.d (3 h HRT). COD removal increased with reduction in HRT i.e. from 14.02 ± 0.58% (24 h HRT) to 29.30 ± 0.84% (6 h HRT) then decreased to 21.97 ± 0.94% (3 h HRT). HRT of 6 h was the optimum condition for ABR operation as indicated.  相似文献   

17.
Continuous biological hydrogen production from sweet sorghum syrup by mixed cultures was investigated by using anaerobic sequencing batch reactor (ASBR). The ASBR was conducted based on the optimum condition obtained from batch experiment i.e. 25 g/L of total sugar concentration, 1.45 g/L of FeSO4 and pH of 5.0. Feasibility of continuous hydrogen fermentation in ASBR operation at room temperature (30 ± 3 °C) with different hydraulic retention time (HRT) of 96, 48, 24 and 12 hr and cycle periods consisting of filling (20 min), settling (20 min), and decanting (20 min) phases was analyzed. Results showed that hydrogen content decreased with a reduction in HRT i.e. from 42.93% (96 hr HRT) to 21.06% (12 hr HRT). Decrease in HRT resulted in a decrease of solvents produced which was from 10.77 to 2.67 mg/L for acetone and 78.25 mg/L to zero for butanol at HRT of 96 hr-12 hr, respectively. HRT of 24 hr was the optimum condition for ASBR operation indicated by the maximum hydrogen yield of 0.68 mol H2/mol hexose. The microbial determination in DGGE analysis indicated that the well-known hydrogen producers Clostridia species were dominant in the reacting step. The presence of Sporolactobacillus sp. which could excrete the bacteriocins causing the adverse effect on hydrogen-producing bacteria might responsible for the low hydrogen content obtained.  相似文献   

18.
The aim of this study was to promote biohydrogen production in an thermophilic anaerobic fluidized bed reactor (AFBR) at 55 °C using a mixture of sugar cane stillage and glucose at approximately 5000–5300 mg COD L−1. During a reduction in the hydraulic retention time (HRT) from 8, 6, 4, 2 and 1 h, H2 yields of 5.73 mmol g CODadded−1 were achieved (at HRT of 4 h, with organic loading rate of 52.7 kg COD m−3 d−1). The maximum volumetric H2 production of 0.78 L H2 h−1 L−1 was achieved using stillage as carbon source. In all operational phases, the H2 average content in the biogas was between 31.4 and 52.0%. Butyric fermentation was the predominant metabolic pathway. The microbial community in accordance with the DGGE bands profile was found similarity coefficient between 91 and 95% without significant changes in bacterial populations after co-substrate removal. Bacteria like Thermoanaerobacterium sp. and Clostridium sp. were identified.  相似文献   

19.
The effects of linoleic acid (LA (C18:2)) and its degradation by-products on hydrogen (H2) production were examined at 37 °C and an initial pH value of 5.0 using granular and flocculated mixed anaerobic cultures from the same source. In the flocculated cultures, the H2 consumers were inhibited to a greater extent when compared to the granular cultures. The maximum H2 yields were 2.52 ± 0.2 and 1.9 ± 0.2 mol mol−1 glucose in the flocculated and granular cultures, respectively. The major long chain fatty acids (LCFAs) detected at which H2 attained a maximum value were LA (750 mg L−1) and myristic acid (MA) (500 mg L−1).  相似文献   

20.
Natural microbial consortia from hot spring samples were used to developed thermophilic mixed cultures for biohydrogen production from cassava starch processing wastewater (CSPW). Significant hydrogen production potentials were obtained from three thermophilic mixed cultures namely PK, SW and PR with maximum hydrogen production yields of 249.3, 180 and 124.9 mL H2/g starch, respectively from raw cassava starch and 252.4, 224.4 and 165.4 mL H2/g starch, respectively from gelatinized cassava starch. Acetic acid-ethanol and acetic-lactic acid type fermentation were observed in cassava starch fermentation, based on three thermophilic mixed cultures performance. The thermophilic mixed cultures PK, SW and PR exhibited the maximum hydrogen yield of 287, 264 and 232 mL H2/g starch in CSPW, respectively corresponding to 53%, 48.7% and 42.8% of the theoretical values. Phylogenetic analysis of thermophilic mixed cultures revealed that members involved cassava starch degrading bacteria and hydrogen producers in both raw cassava starch and CSPW were phylogenetically related to the Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum, Anoxybacillus sp., Geobacillus sp. and Clostridium sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号