首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ru nanoparticles supported on graphene have been synthesized via a one-step procedure using methylamine borane as reducing agent. Compared with NaBH4 and ammonia borane, the as-prepared Ru/graphene NPs reduced by methylamine borane exhibit superior catalytic activity towards the hydrolytic dehydrogenation of ammonia borane. Additionally, the Ru/graphene NPs exhibit higher catalytic activity than its graphene free counterparts, and retain 72% of their initial catalytic activity after 4 reaction cycles. A kinetic study shows that the catalytic hydrolysis of ammonia borane is first order with respect to Ru concentration, the turnover frequency is 100 mol H2 min−1 (mol Ru)−1. The activation energy for the hydrolysis of ammonia borane in the presence of Ru/graphene NPs has been measured to be 11.7 kJ/mol, which is the lowest value ever reported for the catalytic hydrolytic dehydrogenation of ammonia borane.  相似文献   

2.
Hydrolysis of ammonia borane provides a reliable pathway for hydrogen production, while suitable catalysts are indispensable to make the hydrolysis reaction reach a considerable rate. In the present work, a series of TiO2-supported RuCo catalysts have been fabricated by coprecipitation and subsequent reduction of Ru3+ and Co2+ on the surface of TiO2 nanoparticles. Transmission electron microscopy and elemental mapping have verified the good distribution of metal species in the catalysts. The fabricated catalysts have shown excellent performance for catalyzing ammonia borane hydrolysis, especially in alkaline solutions with 0.5 M NaOH. For Ru1Co9/TiO2 in which Ru/Co molar ratio is 1:9, the active energy of catalyzed ammonia borane hydrolysis is 33.25 kJ/mol, and a turnover frequency based on Ru as high as 1408 molH2/(molRu·min) is obtained at 25 °C. Moreover, when different types of TiO2 substrates are used, anatase TiO2-supported catalysts show better catalytic activity than their counterparts with rutile TiO2 as substrate or mixture of anatase and rutile TiO2 as substrate.  相似文献   

3.
Oleylamine-stabilized ruthenium(0) nanoparticles were in situ generated from the reduction of ruthenium(III) chloride by dimethylamine-borane during its dehydrogenation at room temperature. Nearly monodispersed ruthenium(0) nanoparticles of 1.8 ± 0.7 nm size were reproducibly isolated from the reaction solution by filtration and characterized by TEM, XRD, HRTEM, 11B NMR, ATR-IR and UV–visible spectroscopy. Oleylamine-stabilized ruthenium(0) nanoparticles are highly active catalyst in hydrogen generation from dimethylamine-borane providing a release of 1.0 equivalent H2 per mole of dimethylamine-borane and an initial turnover frequency of 137 (mol H2) (mol Ru)−1 (h)−1 at 25.0 ± 0.5 °C. By considering the activity and stability of ruthenium(0) nanoparticles, the optimum ratio of stabilizer to the catalyst was found to be 3.0. Oleylamine-stabilized ruthenium(0) nanoparticles with a stabilizer to ruthenium ratio of 3.0 are stable and reusable catalyst providing 20,660 turnovers in hydrogen generation from dimethylamine-borane at 25.0 ± 0.5 °C. They preserve 75% of their initial catalytic activity even after the fifth run of dehydrogenation of dimethylamine-borane with the complete conversion of Me2NHBH3 to [Me2NBH2]2 plus 1 equivalent of H2 at room temperature. The report also includes the detailed kinetic study of the dehydrogenation of dimethylamine-borane catalyzed by oleylamine-stabilized ruthenium(0) nanoparticles depending on the catalyst concentration, substrate concentration, and temperature as well as the activation parameters of catalytic reaction calculated from the kinetic data. The poisoning experiments showed that the dehydrogenation of dimethylamine-borane catalyzed by ruthenium(0) nanoparticles is heterogeneous catalysis.  相似文献   

4.
Starting with ruthenium(III) acetylacetonate a homogeneous catalyst is formed which catalyzes the release of 1 equivalent of hydrogen gas from the dehydrogenation of ammonia–borane in toluene solution at low temperature in the range 50–65 °C. Mercury poisoning experiments showed that the catalytic dehydrogenation of ammonia–borane starting with ruthenium(III) acetylacetonate is a homogeneous catalysis. The final product obtained after the catalytic dehydrogenation of ammonia borane was thoroughly characterized by using 11B Nuclear Magnetic Resonance and Infrared spectroscopies. The homogeneous catalyst formed from the reduction of ruthenium(III) acetylacetonate provides 950 turnovers (TTO) over 58 h and 27 (mol H2)(mol Ru)−1(h)−1 value of initial turnover frequency (TOF) in hydrogen generation from the dehydrogenation of ammonia–borane at 60 °C before deactivation. Kinetics of this homogenous catalytic dehydrogenation of ammonia–borane was studied depending on the catalyst concentration, substrate concentration, and temperature. The hydrogen generation was found to be first order with respect to both the substrate concentration and catalyst concentration. The activation parameters of this reaction were also determined from the evaluation of the kinetic data: activation energy; Ea = 48 ± 2 kJ mol−1, the enthalpy of activation; ΔH# = 45 ± 2 kJ mol−1 and the entropy of activation ΔS# = −152 ± 5 J mol−1 K−1.  相似文献   

5.
Ruthenium(0) nanoparticles supported on bare or silica-coated magnetite are prepared by impregnation of ruthenium(III) ions followed by their reduction with aqueous solution of sodium borohydride on the surface of support. These magnetically isolable catalysts are used in hydrogen generation from the hydrolysis of ammonia borane at room temperature. They conserve their initial catalytic activity even after the fifth reuse in the hydrolysis reaction. Ruthenium(0) nanoparticles supported on bare magnetite and silica-coated magnetite provide turnover frequency values of 29 min?1 and 127 min?1 and in hydrolytic dehydrogenation of ammonia borane at 25.0 ± 0.1 °C. Thus, coating of the surface of magnetite with silica results in a significant enhancement in catalytic activity of ruthenium(0) nanoparticles in hydrogen generation from the hydrolysis of ammonia borane.  相似文献   

6.
We report the synthesis of magnetically isolable ruthenium(0), rhodium(0), and palladium(0) nanoparticles, supported on carbon-coated magnetic iron particles, and their employment as catalysts in hydrolysis of ammonia borane. Carbon-coated iron (C–Fe) particles are obtained by co-processing of iron powders with methane in a radio frequency thermal plasma reactor. The impregnation of ruthenium(III), rhodium(III) and palladium(II) ions on the carbon-coated iron particles followed by aqueous solution of sodium borohydride leads to the formation of respective metal(0) nanoparticles supported on carbon-coated iron, M0/C–Fe NP (M = Ru, Rh, and Pd) at room temperature. M0/C–Fe NPs are characterized using the ICP-OES, XPS, TEM, and EDX techniques and tested as catalysts for hydrolysis of ammonia borane at 298 K. The results reveal that Rh0/C–Fe, Ru0/C–Fe, Pd0/C–Fe catalysts provide turnover frequency of 83, 93, and 29 min?1, respectively, in this industrially important reaction. More importantly, these magnetically separable metal(0) nanoparticles show very high reusability with no noticeable activity loss in subsequent runs of hydrolysis evolving 3.0 equivalent H2 per mole of ammonia borane.  相似文献   

7.
Ammonia borane hydrolysis is a promising strategy for developing sustainable hydrogen energy. However, this reaction is not kinetically feasible at ambient temperature, thus developing a proper catalyst is indispensable. In this work, Porous carbon is facilely prepared from cattail fibers by using K2CO3, and then used to stabilize Ru nanoparticles. The effects of different synthesis parameters for the biomass-derived carbon supports (e. g. K2CO3 dosage and calcination temperature) and various catalytic reaction conditions (e. g. the amounts of the catalysts, ammonia borane and NaOH, and reaction temperature) on the hydrolysis rate of ammonia borane are investigated. Benefitting from the interconnected hierarchical pores of the optimal porous carbon (p-C), which was prepared with a mass ratio of 6 : 1 for K2CO3 to cattail fibers and calcined at 873 K, and the high dispersion of Ru nanoparticles, the optimal Ru/p-C catalysts exhibit excellent catalytic performance. The corresponding apparent activation energy (28.8 kJ mol?1) and turnover frequency (744.7 min?1 in alkaline solution) are superior to many catalysts previously reported. This work offers a competitive catalyst for the hydrolytic dehydrogenation of chemical hydrogen storage materials.  相似文献   

8.
Boron compounds have recently attracted attention in hydrogen production since they contain many hydrogen atoms. Among these compounds, ammonia borane, which has high hydrogen density (in weight basis), can be used to produce hydrogen through a hydrolysis reaction. However, since the ammonia borane solution is highly resistant to hydrolysis under ambient conditions, there is a need for active and stable catalysts to accelerate the reaction. In this review paper, unsupported and carbon-based supported metal catalysts used for hydrogen production through the hydrolysis of ammonia borane are presented. Noble metal catalysts (Ru, Rh, Pd, Pt and their binary and ternary alloys) and non-noble metal catalysts (Co, Ni, Fe, Cu and their binary and ternary alloys) were examined. The activation energy of reaction and turnover frequency (TOF) values were compared for these catalysts. Among the unsupported catalysts, it was concluded that the multi-metal catalyst systems (binary, ternary and quaternary) have higher catalytic activity than a single use of the same metals. In addition, the comparison showed that the supported catalysts are more resistant to catalytic cycles and suitable for long-term use. It was observed that CNT supported Rh (TOF = 706 mol H2 mol cat−1 min−1) and graphene supported Ru (TOF = 600 mol H2 mol cat−1 min−1) catalysts are the most active catalysts for the hydrogen generation from the ammonia borane at room temperature.  相似文献   

9.
Water-soluble poly(4-styrenesulfonic acid-co-maleic acid), PSSA-co-MA, stabilized ruthenium(0) and palladium(0) nanoclusters were for the first time prepared in situ from the reduction of ruthenium(III) chloride and potassium tetrachloropalladate(II), respectively, by ammonia–borane during its hydrolysis at room temperature. PSSA-co-MA stabilized ruthenium(0) and palladium(0) nanoclusters having average particle size of 1.9 ± 0.5 and 3.5 ± 1.6 nm, respectively, were isolated from the reaction solution and characterized by TEM and UV–visible electronic absorption spectroscopy. PSSA-co-MA stabilized ruthenium(0) and palladium(0) nanoclusters are highly active catalysts for hydrogen generation from the hydrolysis of ammonia–borane at low temperature. PSSA-co-MA stabilized ruthenium(0) and palladium(0) nanoclusters provide 51,720 and 8720 turnovers, respectively, in the hydrogen generation from the hydrolysis of ammonia–borane at 25 °C before deactivation. Catalytic hydrolysis of ammonia–borane is first order with respect to the catalyst concentration, but zero order with respect to the substrate concentration in the case of both ruthenium(0) and palladium(0) nanoclusters. Activation energies for the hydrolysis of ammonia–borane in the presence of PSSA-co-MA stabilized ruthenium(0) or palladium(0) nanoclusters (54 ± 2 kJ mol−1 and 44 ± 2 kJ mol−1, respectively) are smaller than most of the values reported for the same reaction in the presence of other catalyst systems.  相似文献   

10.
Efficient and controllable release of hydrogen from solid hydrogen storage materials is a promising way to produce hydrogen safely and on-demand. The development of economical, highly active, easily recyclable catalysts is critical for practical applications, which remains a great challenging. Herein, the easily controllable and cost-effective corrosion strategy is ingeniously developed to simply prepare ultralow-content ruthenium coupled with nickel hydroxide on nickel foam (Ru–Ni–NF). After experiencing the spontaneous oxidation-reduction reactions between the reactive NF and Ru3+, ultrafine Ru nanoparticles decorated nickel hydroxide nanosheets are in situ intimately grown on porous NF networks. The optimal Ru–Ni–NF catalyst exhibits the excellent performance for catalytic hydrolysis of ammonia borane with a high turnover frequency (TOF) of 539.6 molH2 molRu?1 min?1 at 298 K and a low apparent activation energy of 36.4 kJ mol?1, due to the synergistic effect between Ru nanoparticles and nickel hydroxide nanosheets. Furthermore, the Ru–Ni–NF catalyst possesses easy separation and outstanding durability, which is superior to powdered catalysts. This study provides a facile and economical strategy for the preparation of ultralow-content noble metal supported metal foam-type catalysts for dehydrogenation of ammonia borane.  相似文献   

11.
Graphic carbon nitride prepared by the thermal decomposition of urea was used a catalyst support for the in situ immobilization of Ru nanoparticles (NPs) (Ru/g-C3N4). The catalytic property of Ru/g-C3N4 was investigated in the hydrolysis of ammonia borane (AB) in an aqueous solution under mild conditions. Results show that the in situ generated Ru NPs are well dispersed on the surface of g-C3N4 with a mean particle size of 2.8 nm. The catalytic performance for AB hydrolysis indicates that 3.28 wt% Ru/g-C3N4 exhibits excellent catalytic activity with a high turnover frequency number of 313.0 mol H2 (mol Ru·min)−1 at room temperature. This strategy may provide an eco-friendly catalytic system for developing a sustainable catalytic route to hydrogen production.  相似文献   

12.
Ru@Ni core–shell nanoparticles (NPs) supported on graphene have been synthesized by one-step in situ co-reduction of aqueous solution of ruthenium (III) chloride, nickel (II) chloride, and graphene oxide (GO) with ammonia borane (AB) as the reducing agent under ambient condition. The as-synthesized NPs exhibit much higher catalytic activity for hydrolytic dehydrogenation of AB than the monometallic, bimetallic alloy (RuNi/graphene), and graphene-free core–shell (Ru@Ni) counterparts. Additionally, the Ru@Ni/graphene NPs facilitate the hydrolysis of AB, with the turnover frequency (TOF) value of 340 mol H2 min−1 (mol Ru)−1, which is among the highest value reported on Ru-based NPs so far, and even higher than the reversed Ni@Ru NPs. Furthermore, the as-prepared NPs exert satisfied durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB and methylamine borane (MeAB). Moreover, this simple synthetic method can be extended to other Ru-based bimetallic core–shell systems for more applications.  相似文献   

13.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   

14.
The magnetic Ni@h-BN composites containing the uniform Ni nanoparticles supported on h-BN nanosheets have been prepared via a facile solvothermal method. The as-prepared samples show high catalytic performance for H2 generation from the ammonia borane aqueous solution, especially for the Ni@h-BN with 25.0 wt% Ni content. Moreover, the Ni@h-BN composites possess a good ferromagnetic property at room temperature, endowing them with rapid magnetic separation to recycle. The kinetics of the hydrolysis of ammonia borane over the Ni@h-BN composites were further investigated in detail. It is found that the hydrogen generation was highly dependent on the catalyst amount and the reaction temperature. The activation energy of the hydrolysis reaction of ammonia borane is found to be 47.3 kJ mol?1 over the Ni@h-BN with 25.0 wt% Ni content. Considering the good catalytic activities for H2 release, the Ni@h-BN composites are expected to find important application in fuel cells and the related fields.  相似文献   

15.
Bimetallic nickel manganese nanoalloy-decorated graphitic nanofibers were prepared using electrospinning. The introduced catalysts were explored as an effective and inexpensive catalyst for H2 generation from ammonia borane using hydrolysis. Standard techniques were used to determine the morphology and chemical composition of the nanofibers. Characterization indicated successful formation of bimetallic nickel-manganese-decorated graphitic nanofibers. Introduced effective catalysts showed a high reusability for H2 generation using ammonia borane hydrolysis at low concentrations and temperatures. All formations of the introduced catalysts demonstrated a higher catalytic activity in H2 generation than nickel-decorated carbon nanofibers. Samples composed of 55 wt% nickel and 45 wt% manganese showed the best catalytic activity compared with other formulations. Initial turnover frequency (TOF) of this sample was 58.2 min−1, twice the TOF of the manganese-free catalyst. Kinetics and thermodynamics revealed that the catalyst concentration followed the pseudo-first order reaction while the ammonia borane concentration follow the pseudo-zero order reaction, providing activation energy of 38.9 kJ mol−1.  相似文献   

16.
Ceria supported ruthenium nanoparticles (Ru0/CeO2) are synthesized by impregnation of Ru3+ ions on CeO2 powders followed by sodium borohydride reduction of Ru3+/CeO2. Their characterization was achieved using analytical methods including TEM, XRD, BET, SEM, and XPS. All the results reveal the formation of ruthenium(0) nanoparticles in 1.8 ± 0.3 nm size on CeO2 support. Ru0/CeO2 nanoparticles show high activity in catalyzing the H2 evolution from dimethylamine borane (DMAB). Ru0/CeO2 nanoparticles with 0.55% wt Ru provide the highest turnover frequency (812 h−1) for releasing H2 from DMAB at 60 °C and a total of 2500 turnovers before deactivation. High activity of Ru0/CeO2 nanoparticles for catalytic dehydrogenation of DMAB is attributable to the reducible nature of CeO2 support. Ce3+ defects formation in ceria under reducing conditions of dehydrogenation causes accumulation of negative charge on the oxide support, which makes oxide surface attractive for the ruthenium(0) nanoparticles. This, in turn, causes an enhancement in the metal-support interaction and thus in catalytic activity. The XPS analysis of bare ceria and Ru0/CeO2 demonstrates the increase in the concentration of Ce3+ defects after catalysis. Ru0/CeO2 nanoparticles are also reusable catalyst for H2 evolution from DMAB retaining 40% of initial activity after 4th run of reaction. The catalytic activity of Ru0/CeO2 nanoparticles and activation energy of catalytic dehydrogenation are compared with those of the other ruthenium based catalysts known in literature.  相似文献   

17.
Cobalt(0) nanoclusters embedded in silica (Co@SiO2) were prepared by a facile two-step procedure. In the first step, the hydrogenphosphate anion (HPO42−) stabilized cobalt(0) nanoclusters were in situ generated from the reduction of cobalt(II) chloride during the hydrolysis of sodium borohydride (NaBH4) in the presence of stabilizer. Next, HPO42− anion-stabilized cobalt(0) nanoclusters were embedded in silica formed by in situ hydrolysis and condensation of tetraethylorthosilicate added as ethanol solution. Co@SiO2 can be separated from the solution by vacuum filtration and characterized by UV-Vis electronic absorption spectroscopy, TEM, SEM-EDX, ATR-IR and ICP-OES techniques. Co@SiO2 are found to be highly active and stable catalysts in the hydrolysis of ammonia borane (AB) even at low cobalt concentration and room temperature. They provide an initial turnover frequency of 13.3 min−1 and 24,400 total turnovers over 52 h in the hydrolysis of AB at 25.0 ± 0.5 °C. Moreover, Co@SiO2 retain 72% and 74% of the initial activity after ten runs recyclability and five cycles reusability test in the hydrolysis of AB, respectively. The kinetics of hydrogen generation from the hydrolysis of AB catalyzed by Co@SiO2 was studied depending on the catalyst concentration, substrate concentration, and temperature. The activation parameters of this catalytic reaction were also determined from the evaluation of the kinetic data.  相似文献   

18.
19.
In this paper, ruthenium supported on nitrogen-doped porous carbon (Ru/NPC) catalyst is synthesized by a simple method of in situ reduction using ammonia borane (AB) as reducing agent. The composition and structure of Ru/NPC catalyst are systematically characterized. This catalyst can efficiently catalyze the hydrolysis of AB. The hydrogen production reaction is completed within about 90 s at a temperature of 298 K and the maximum rate of hydrogen production is 3276 ml·s−1·g−1 with a reduced activation energy of 24.95 kJ·mol−1. The turnover frequency (TOF) for hydrogen production is about 813 molH2·molRu−1·min−1. Moreover, this catalyst can be recycled with a well-maintained performance. After five cycles, the maximum rate of hydrogen generation is maintained at 2206 ml·s−1·g−1, corresponding to 67.3% of the initial catalytic activity. Our results suggest that Ru/NPC prepared by in situ reduction is a highly efficient catalyst for hydrolytic dehydrogenation of AB.  相似文献   

20.
Developing efficient but facile strategies to modulate the catalytic activity of Ru deposited on metal oxides is of broad interest but remains challenging. Herein, we report the oxygen vacancies and morphological modulation of vacancy-rich Co3O4 stabilized Ru nanoparticles (NPs) (Ru/VO-Co3O4) to boost the catalytic activity and durability for hydrogen production from the hydrolysis of ammonia borane (AB). The well-defined and small-sized Ru NPs and VO-Co3O4 induced morphology transformation via in situ driving VO-Co3O4 to 2D nanosheets with abundant oxygen vacancies or Co2+ species considerably promote the catalytic activity and durability toward hydrogen evolution from AB hydrolysis. Specifically, the Ru/VO-Co3O4 pre-catalyst exhibits an excellent catalytic activity with a high turnover frequency of 2114 min?1 at 298 K. Meanwhile, the catalyst also shows a high durability toward AB hydrolysis with six successive cycles. This work establishes a facile but efficient strategy to construct high-performance catalysts for AB hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号