共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter G. LoutzenhiserAldo Steinfeld 《International Journal of Hydrogen Energy》2011,36(19):12141-12147
Solar syngas production from CO2 and H2O is considered in a two-step thermochemical cycle via Zn/ZnO redox reactions, encompassing: 1) the ZnO thermolysis to Zn and O2 using concentrated solar radiation as the source of process heat, and 2) Zn reacting with mixtures of H2O and CO2 yielding high-quality syngas (mainly H2 and CO) and ZnO; the ZnO is recycled to the first, solar step, resulting in net reaction βCO2 + (1 − β)H2O → βCO + (1 − β)H2. Syngas is further processed to liquid hydrocarbon fuels via Fischer-Tropsch or other catalytic processes. Second-law thermodynamic analysis is applied to determine the cycle efficiencies attainable with and without heat recuperation for varying molar fractions of CO2:H2O and solar reactor temperatures in the range 1900-2300 K. Considered is the energy penalty of using Ar dilution in the solar step below 2235 K for shifting the equilibrium to favor Zn production. 相似文献
2.
Simultaneous photocatalytic hydrogen production and CO2 reduction (to form CO and CH4) from water using methanol as a hole scavenger were investigated using silver-modified TiO2 (Ag/TiO2) nanocomposite catalysts. A simple ultrasonic spray pyrolysis (SP) method was used to prepare mesoporous Ag/TiO2 composite particles using TiO2 (P25) and AgNO3 as the precursors. The material properties and photocatalytic activities were compared with those prepared by a conventional wet-impregnation (WI) method. It was found that the samples prepared by the SP method had a larger specific surface area and a better dispersion of Ag nanoparticles on TiO2 than those prepared by the WI method, and as a result, the SP samples showed much higher photocatalytic activities toward H2 production and CO2 reduction. The optimal Ag concentration on TiO2 was found to be 2 wt%. The H2 production rate of the 2% Ag/TiO2–SP sample exhibited a six-fold enhancement compared with the 2% Ag/TiO2–WI sample and a sixty-fold enhancement compared with bare TiO2. The molar ratio of H2 and CO in the final products can be tuned in the range from 2 to 10 by varying the reaction gas composition, suggesting a viable way of producing syngas (a mixture of H2 and CO) from CO2 and water using the prepared Ag/TiO2 catalysts with energy input from the sun. 相似文献
3.
Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames
Jeong Park Jeong Soo Kim Jin Oh Chung Jin Han Yun Sang In Keel 《International Journal of Hydrogen Energy》2009
Chemical effects of added CO2 on flame extinction characteristics are numerically studied in H2/CO syngas diffusion flames diluted with CO2. The two representative syngas flames of 80% H2 + 20% CO and 20% H2 + 80% CO are inspected according to the composition of fuel mixture diluted with CO2 and global strain rate. Particular concerns are focused on impact of chemical effects of added CO2 on flame extinction characteristics through the comparison of the flame characteristics between well-burning flames far from extinction limit and flames at extinction. It is seen that chemical effects of added CO2 reduce critical CO2 mole fraction at flame extinction and thus extinguish the flame at higher flame temperature irrespective of global strain rate. This is attributed by the suppression of the reaction rate of the principal chain branching reaction through the augmented consumption of H-atom from the reaction CO2 + H→CO + OH. As a result the overall reaction rate decreases. These chemical effects of added CO2 are similar in both well-burning flames far from extinction limit and flames at extinction. There is a mismatching in the behaviors between critical CO2 mole fraction and maximum flame temperature at extinction. This anomalous phenomenon is also discussed in detail. 相似文献
4.
The thermochemical dissociation of CO2 and H2O from reactive SnO nanopowders is studied via thermogravimetry analysis. SnO is first produced by solar thermal dissociation of SnO2 using concentrated solar radiation as the high-temperature energy source. The process targets the production of CO and H2 in separate reactions using SnO as the oxygen carrier and the syngas can be further processed to various synthetic liquid fuels. The global process thus converts and upgrades H2O and captured CO2 feedstock into solar chemical fuels from high-temperature solar heat only, since the intermediate oxide is not consumed but recycled in the overall process. The objective of the study was the kinetic characterization of the H2O and CO2 reduction reactions using reactive SnO nanopowders synthesized in a high-temperature solar chemical reactor. SnO conversion up to 88% was measured during H2O reduction at 973 K and an activation energy of 51 ± 7 kJ/mol was identified in the temperature range of 798-923 K. Regarding CO2 reduction, a higher temperature was required to reach similar SnO conversion (88% at 1073 K) and the activation energy was found to be 88 ± 7 kJ/mol in the range of 973-1173 K with a CO2 reaction order of 0.96. The SnO conversion and the reaction rate were improved when increasing the temperature or the reacting gas mole fraction. Using active SnO nanopowders thus allowed for efficient and rapid fuel production kinetics from H2O and CO2. 相似文献
5.
A study on the effect of CO2 and H2O dilution on the laminar burning characteristics of CO/H2/air mixtures was conducted at elevated pressures using spherically expanding flames and CHEMKIN package. Experimental conditions for the CO2 and H2O diluted CO/H2/air/mixtures of hydrogen fraction in syngas from 0.2 to 0.8 are the pressures from 0.1 to 0.3 MPa, initial temperature of 373 K, with CO2 or H2O dilution ratios from 0 to 0.15. Laminar burning velocities of the CO2 and H2O diluted CO/H2/air/mixtures were measured and calculated using the mechanism of Davis et al. and the mechanism of Li et al. Results show that the discrepancy exists between the measured values and the simulated ones using both Davis and Li mechanisms. The discrepancy shows different trends under CO2 and H2O dilution. Chemical kinetics analysis indicates that the elementary reaction corresponding to peak ROP of OH consumption for mixtures with CO/H2 ratio of 20/80 changes from reaction R3 (OH + H2 = H + H2O) to R16 (HO2+H = OH + OH) when CO2 and H2O are added. Sensitivity analysis was conducted to find out the dominant reaction when CO2 and H2O are added. Laminar burning velocities and kinetics analysis indicate that CO2 has a stronger chemical effect than H2O. The intrinsic flame instability is promoted at atmospheric pressure and is suppressed at elevated pressure for the CO2 and H2O diluted mixtures. This phenomenon was interpreted with the parameters of the effective Lewis number, thermal expansion ratio, flame thickness and linear theory. 相似文献
6.
Simultaneous photocatalytic reduction of water to H2 and CO2 to CO was observed over Cu2O photocatalyst under both full arc and visible light irradiation (>420 nm). It was found that the photocatalytic reduction preference shifts from H2 (water splitting) to CO (CO2 reduction) by controlling the exposed facets of Cu2O. More interestingly, the low index facets of Cu2O exhibit higher activity for CO2 photoreduction than high index facets, which is different from the widely-reported in which the facets with high Miller indices would show higher photoactivity. Improved CO conversion yield could be further achieved by coupling the Cu2O with RuOx to form a heterojunction which slows down fast charge recombination and relatively stabilises the Cu2O photocatalyst. The RuOx amount was also optimised to maximise the junction's photoactivity. 相似文献
7.
The mixed metal oxides NiFe2O4 and CoFe2O4 are candidate materials for the Chemical Looping Hydrogen (CLH) process, which produces pure and separate streams of H2 and CO2 without the use of complicated and expensive separations equipment. In the CLH process, syngas reduces a metal oxide, oxidizing the H2 and CO in the syngas to H2O and CO2, and “stores” the chemical energy of the syngas in the reduced metal oxide. The reduced metal oxide is then oxidized in steam to regenerate the original metal oxide and produce H2. In this study, we report thermodynamic modeling and experimental results regarding the syngas reduction and H2O oxidation of NiFe2O4 and CoFe2O4 to determine the feasibility of their use in the CLH process. Modeling predicts the oxidation of nearly all the CO and H2 in syngas to H2O and CO2 during the reduction step for both materials, and regeneration of the mixed metal spinel phase during oxidation with excess H2O. Laboratory tests in a packed bed reactor confirmed over 99% conversion of H2 and CO to H2O and CO2 during reduction of NiFe2O4 and CoFe2O4. Powder XRD analysis of the reduced materials showed, in accordance with thermodynamic predictions, the presence of a spinel phase and a metallic phase. High reactivity of the reduced NiFe2O4 and CoFe2O4 with H2O was observed, and XRD analysis confirmed re-oxidation to NiFe2O4 and CoFe2O4 under the conditions tested. When compared with a conventional Fe-based CLH material, the mixed metal spinels showed a higher extent of reduction under the same conditions, and produced four times the H2 per mass of active material than the Fe-based material. Analysis of the H2 and CO consumed in the reduction and the H2 produced during the oxidation showed over 90% conversion of the H2 and CO in syngas back to H2 during oxidation. 相似文献
8.
Hugo J. Burbano Jhon ParejaAndrés A. Amell 《International Journal of Hydrogen Energy》2011,36(4):3232-3242
Experimental measurement of the laminar burning velocities of H2/CO/air mixtures and equimolar H2/CO mixtures diluted with N2 and CO2 up to 60% and 20% by volume, respectively, were conducted at different equivalence ratios and conditions near to the sea level, 0.95 atm and 303 ± 2 K. Flames were generated using contoured slot-type nozzle burners and Schlieren images were used to determine the laminar burning velocity with the angle method. Numerical calculations were also conducted using the most recent detailed reaction mechanisms for comparison with the present experimental results. Additionally, a study was conducted to analyze the flame stability phenomenology that was found in the present experiments. The increase in the N2 and CO2 dilution fractions considerably reduced the laminar burning velocity due to the decrease in heat release and increase in heat capacity. At the same dilution fractions this effect was higher for the case of CO2 due to its higher heat capacity and dissociation effects during combustion. Flame instabilities were observed at lean conditions. While the presence of CO in the fuel mixture tends to stabilize the flame, H2 has a destabilizing effect which is the most dominant. A higher N2 and CO2 dilution fraction increased the range of equivalence ratios where unstable flames were obtained due to the increase in the thermal-diffusive instabilities. 相似文献
9.
Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame. 相似文献
10.
在不同温度下采用乙二醇溶剂热合成法合成Bi2MoO6催化剂(BMO-x,x=140、160、180),BMO-160在450℃下煅烧的样品为BMO。用XRD、BET、SEM、EDS、UV-visDRS、XPS、in-situ DRIFTS等表征方法研究其理化特性,建立BMO和BMO-x(x=140、160、180)催化剂的反应性能与孔道结构、材料形貌和缺陷空位的构效关系。结果表明,适宜的溶剂合成温度可以形成更高的孔隙率,调控氧空位的占比,有助于产生更好的催化性能。其中,BMO-160的CO产率更高,这是由于在160℃溶剂热合成温度下制备的样品形貌更优,氧空位占比适中。 相似文献
11.
The objective of this study is to investigate the impact of syngas composition by varying the H2/CO ratio (1:3, 1:1, and 3:1 by volume), the CO2 dilution (0%–40%), and methane addition (0%–40%) on laminar flame speed. Thus, laminar flame speeds of premixed syngas–air mixtures were measured for different equivalence ratios (0.8–2.2) and inlet temperatures (295–450 K) using the Bunsen-burner method. It was found that laminar flame speed increases with increasing H2/CO ratio, while CO2 dilution or CH4 addition decreased it. The location of the maximum flame speed shifts to richer mixtures with decreasing H2/CO ratio, while it shifts to leaner mixtures with the addition of CH4 due to its inherent slower flame speed. The location of the maximum flame speed is also shifted towards leaner mixtures with the addition of CO2 due to the preponderance of the reduction of the adiabatic flame temperature with increasing dilution. Comparison between experimental and numerical results shows a better agreement using a modified mechanism derived from GRI-Mech 3.0. A correlation, based on the experimental results, is proposed to calculate the laminar flame speed over a wide range of equivalence ratios, inlet temperatures, and fuel content. 相似文献
12.
The coal gasification process is used in commercial production of synthetic gas as a means toward clean use of coal. The conversion of solid coal into a gaseous phase creates opportunities to produce more energy forms than electricity (which is the case in coal combustion systems) and to separate CO2 in an effective manner for sequestration. The current work compares the energy and exergy efficiencies of an integrated coal-gasification combined-cycle power generation system with that of coal gasification-based hydrogen production system which uses water-gas shift and membrane reactors. Results suggest that the syngas-to-hydrogen (H2) system offers 35% higher energy and 17% higher exergy efficiencies than the syngas-to-electricity (IGCC) system. The specific CO2 emission from the hydrogen system was 5% lower than IGCC system. The Brayton cycle in the IGCC system draws much nitrogen after combustion along with CO2. Thus CO2 capture and compression become difficult due to the large volume of gases involved, unlike the hydrogen system which has 80% less nitrogen in its exhaust stream. The extra electrical power consumption for compressing the exhaust gases to store CO2 is above 70% for the IGCC system but is only 4.5% for the H2 system. Overall the syngas-to-hydrogen system appears advantageous to the IGCC system based on the current analysis. 相似文献
13.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent. 相似文献
14.
Jianzhong Guo Jing Gao Binghui Chen Zhaoyin Hou Jinhua Fei Hui Lou Xiaoming Zheng 《International Journal of Hydrogen Energy》2009,34(21):8905-8911
A series of Ni/SiO2 catalysts containing different amounts of Gd2O3 promoter was prepared, characterized by H2-adsorption and XRD, and used for carbon dioxide reforming of methane (CRM) and methane autothermal reforming with CO2 + O2 (MATR) in a fluidized-bed reactor. The results of pulse surface reactions showed that Ni/SiO2 catalysts containing Gd2O3 promoter could increase the activity for CH4 decomposition, and Raman analysis confirmed that reactive carbon species mainly formed on the Ni/SiO2 catalysts containing Gd2O3 promoter. In this work, it was found that methane activation and reforming reactions proceeded according to different mechanisms after Gd2O3 addition due to the formation of carbonate species. In addition, Ni/SiO2 catalysts containing Gd2O3 promoter demonstrated higher activity and stability in both CRM and MATR reactions in a fluidized bed reactor than Ni/SiO2 catalysts without Gd2O3 even at a higher space velocity. 相似文献
15.
In most current fossil-based hydrogen production methods, the thermal energy required by the endothermic processes of hydrogen production cycles is supplied by the combustion of a portion of the same fossil fuel feedstock. This increases the fossil fuel consumption and greenhouse gas emissions. This paper analyzes the thermodynamics of several typical fossil fuel-based hydrogen production methods such as steam methane reforming, coal gasification, methane dissociation, and off-gas reforming, to quantify the potential savings of fossil fuels and CO2 emissions associated with the thermal energy requirement. Then matching the heat quality and quantity by solar thermal energy for different processes is examined. It is concluded that steam generation and superheating by solar energy for the supply of gaseous reactants to the hydrogen production cycles is particularly attractive due to the engineering maturity and simplicity. It is also concluded that steam-methane reforming may have fewer engineering challenges because of its single-phase reaction, if the endothermic reaction enthalpy of syngas production step (CO and H2) of coal gasification and steam methane reforming is provided by solar thermal energy. Various solar thermal energy based reactors are discussed for different types of production cycles as well. 相似文献
16.
Long Xu lin'e Duan Mingchen Tang Pei Liu Xiaoxun Ma Yulong Zhang H. Gordon Harris Maohong Fan 《International Journal of Hydrogen Energy》2014
The objective of the study is to investigate the catalytic performance of Cr-promoted Ni/char in CO2 reforming of CH4 at 850 °C. The char obtained from the pyrolysis of a long-flame coal at 1000 °C was used as the support. The catalysts were prepared by incipient wetness impregnation methods with different metal precursor doping sequence. The characterization of the composite catalysts was evaluated by XRD, XPS, SEM-EDS, TEM, H2-TPR, CO2-TPD, CH4-TPSR, and CO2-TPO. The results indicate that the catalyst prepared by co-impregnation of Ni and Cr possess higher activity than those by sequential impregnation. The optimal loading of Cr on 5 wt% Ni/char is 7.8 wt‰. Moreover, the molar feed ratio of CH4/CO2 has a considerable effect on both the stability and the activity of Cr–Ni/char. The main effect of Cr is the great enhance of the adsorption to CO2. It is interesting that the conversions of CH4 and CO2 over Cr-promoted Ni/char and Ni/char decrease initially, following by a steady rise as the reaction proceeds with time-on-stream (TOS). In addition, cyclic tests were conducted and no distinct deterioration in the catalytic performance of the catalysts was observed. On the basis of the obtained results, nickel carbide was speculated to be the active species which was formed during the CO2 reforming of CH4 reaction. 相似文献
17.
A new oxy-fuel H2 generation process with CO2 avoidance is provided. The process utilizes mass recirculation of CO and H2O to the oxyforming reactor. A comparison between non-recirculating and mass-recirculating oxyforming reactor operation is given. Main benefits of mass recirculation are emphasized. The oxyforming reactor is integrated with the H2 and CO2 separators, fuel cell and O2 generator. In the process C/O is equal to 0.5 while C/H determines the temperature level in the reactor. The reaction system includes combustion, steam reforming and water–gas shift reactions. The oxyforming process is found to be mass transport controlled with O2 as the limiting reactant. It is emphasized that under MR conditions the decomposition of H2/CO2 by water–gas shift reaction is suppressed by means of CO/H2O-enrichment and hence MR conditions allow for higher temperatures beneficial to endothermic steam reforming reaction. Under MR conditions the thermodynamic equilibrium limits are overcome and all reactions are forced to proceed to the completion which enables 100% selectivities to H2 and CO2. The effects of operation parameters such as temperature, flow rate, pressure and composition are examined. The derived S-terms enable for the concise interpretation of the effect of pressure on the concentration gradients transverse to the flow. The consistent control algorithm of the oxyforming reactor is provided. 相似文献
18.
M.H. Halabi M.H.J.M. de Croon J. van der Schaaf P.D. Cobden J.C. Schouten 《International Journal of Hydrogen Energy》2012
This paper presents an experimental study for a newly modified K2CO3-promoted hydrotalcite material as a novel high capacity sorbent for in-situ CO2 capture. The sorbent is employed in the sorption enhanced steam reforming process for an efficient H2 production at low temperature (400–500 °C). A new set of adsorption data is reported for CO2 adsorption over K-hydrotalcite at 400 °C. The equilibrium sorption data obtained from a column apparatus can be adequately described by a Freundlich isotherm. The sorbent shows fast adsorption rates and attains a relatively high sorption capacity of 0.95 mol/kg on the fresh sorbent. CO2 desorption experiments are conducted to examine the effect of humidity content in the gas purge and the regeneration time on CO2 desorption rates. A large portion of CO2 is easily recovered in the first few minutes of a desorption cycle due to a fast desorption step, which is associated with a physi/chemisorption step on the monolayer surface of the fresh sorbent. The complete recovery of CO2 was then achieved in a slower desorption step associated with a reversible chemisorption in a multi-layer surface of the sorbent. The sorbent shows a loss of 8% of its fresh capacity due to an irreversible chemisorption, however, it preserves a stable working capacity of about 0.89 mol/kg, suggesting a reversible chemisorption process. The sorbent also presents a good cyclic thermal stability in the temperature range of 400–500 °C. 相似文献
19.
H. Yamaguchi X.R. Zhang K. Fujima M. Enomoto N. Sawada 《Applied Thermal Engineering》2006,26(17-18):2345-2354
A solar energy powered Rankine cycle using supercritical CO2 for combined production of electricity and thermal energy is proposed. The proposed system consists of evacuated solar collectors, power generating turbine, high-temperature heat recovery system, low-temperature heat recovery system, and feed pump. The system utilizes evacuated solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and thereby produce mechanical energy and hence electricity. The system also recovers heat (high-temperature heat and low-temperature heat), which could be used for refrigeration, air conditioning, hot water supply, etc. in domestic or commercial buildings. An experimental prototype has been designed and constructed. The prototype system has been tested under typical summer conditions in Kyoto, Japan; It was found that CO2 is efficiently converted into high-temperature supercritical state, of while electricity and hot water can be generated. The experimental results show that the solar energy powered Rankine cycle using CO2 works stably in a trans-critical region. The estimated power generation efficiency is 0.25 and heat recovery efficiency is 0.65. This study shows the potential of the application of the solar-powered Rankine cycle using supercritical CO2. 相似文献
20.
An experimental study is carried out to investigate the performance of a solar Rankine system using supercritical CO2 as a working fluid. The testing machine of the solar Rankine system consists of an evacuated solar collector, a pressure relief valve, heat exchangers and CO2 feed pump, etc. The solar energy powered system can provide electricity output as well as heat supply/refrigeration, etc. The system performance is evaluated based on daily, monthly and yearly experiment data. The results obtained show that heat collection efficiency for the CO2-based solar collector is measured at 65.0–70.0%. The power generation efficiency is found at 8.78–9.45%, which is higher than the value 8.20% of a solar cell. The result presents a potential future for the solar powered CO2 Rankine system to be used as distributed energy supply system for buildings or others. 相似文献