首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two composite electrode structures for direct methanol fuel cells comprising an outer, middle and an inner catalyst layers, are proposed to suppress methanol crossover and improve the utilization efficiency of methanol fuel. These two composite anodes have structures I and II, and are prepared by a combination of screen-printing, direct-printing and impregnation–reduction (IR) methods. The inner layer of these two composite anodes, which are prepared by IR method, is a layer of nanometer-sized Pt37–Ru63/Pt or Pt37–Ru63/Pt20–Ru80 catalyst particles deposited in the PEM anode side serving as the reactive methanol filter layer. The suppression of methanol crossover and the membrane electrode assembly (MEA) performance of the proposed structures are compared to those of the normal-MEA structure with PEM without IR treatment. The mechanisms of the suppression of methanol crossover are investigated. Experimental results show that the MEA-I and MEA-II improve the suppression of methanol crossover by up to 22% and 33% compared to the normal-MEA structure, respectively, and yield a 12% and 18% better MEA performance than the normal-MEA structure, respectively. The filtering and electrode effects of a layer of nanometer-sized Pt37–Ru63/Pt or Pt37–Ru63/Pt20–Ru80 catalyst particles deposited in the PEM anode side contribute to the suppression of methanol crossover and performance enhancement.  相似文献   

2.
In this study, the effects of Nafion® ionomer content in membrane electrode assemblies (MEAs) of polymer electrolyte membrane (PEM) water electrolyser were discussed. The MEAs were prepared with a catalyst coated membrane (CCM) method. The catalysts inks with Nafion ionomer could form uniform coatings deposited on the membrane surfaces. SEM and area EDX mapping demonstrated that anode catalyst coating was uniformly distributed, with a microporous structure. The contents of Nafion ionomer were optimized to 25% for the anode and 20% for cathode. A current density of 1 A cm−2 was achieved at terminal voltage 1.586 V at 80 °C in a PEMWE single cell, with Nafion 117, Pt/C as cathode, and Ru0.7Ir0.3O2 as anode.  相似文献   

3.
Sol–gel derived Nafion/SiO2 hybrid membrane is prepared and employed as the separator for vanadium redox flow battery (VRB) to evaluate the vanadium ions permeability and cell performance. Nafion/SiO2 hybrid membrane shows nearly the same ion exchange capacity (IEC) and proton conductivity as pristine Nafion 117 membrane. ICP-AES analysis reveals that Nafion/SiO2 hybrid membrane exhibits dramatically lower vanadium ions permeability compared with Nafion membrane. The VRB with Nafion/SiO2 hybrid membrane presents a higher coulombic and energy efficiencies over the entire range of current densities (10–80 mA cm−2), especially at relative lower current densities (<30 mA cm−2), and a lower self-discharge rate compared with the Nafion system. The performance of VRB with Nafion/SiO2 hybrid membrane can be maintained after more than 100 cycles at a charge–discharge current density of 60 mA cm−2. The experimental results suggest that the Nafion/SiO2 hybrid membrane approach is a promising strategy to overcome the vanadium ions crossover in VRB.  相似文献   

4.
A composite anode comprising an outer and an inner catalyst layer is proposed to 1) suppress the ethanol crossover in direct ethanol fuel cell (DEFC), and 2) improve the cell performance as well as the utilization efficiency of ethanol fuel. The inner catalyst layer contains a thin layer of Pt50–Sn50 nanoparticles directly deposited on the Nafion® membrane surface through impregnation-reduction (IR) method, and acts as the reactive ethanol filter. In this paper, several aspects of the research are reported. First, the mitigation of ethanol crossover and the performance of membrane electrode assembly (MEA) of the proposed structure are compared to those with normal structure. Next, a candidate mechanism of the mitigation of ethanol crossover and the improvement of MEA performance is investigated. Third, SEM, X-ray, EDS and EPMA analysis are used to characterize microstructures, phases, chemical composition and distributions of the obtained Pt50–Sn50 layer. Finally, the ethanol crossover rate in a DEFC is determined through measuring the CO2 concentration at the cathode exhaust in real time. Experimental results demonstrate that the composite anode with an inner layer of Pt50–Sn50 nano-catalyst particles on Nafion membrane surface suppresses ethanol crossover up to 17% more than the anode without the inner layer, and yield a 6% better MEA performance than the normal-MEA. The inner Pt50–Sn50 catalyst layer serves both as an ethanol filter and an electrode. Its dual-role contributes to the suppression of ethanol crossover, and improvement of both cell performance and the utilization efficiency of ethanol fuel, both of which are dependent on the catalyst activity of the ethanol electro-oxidation over the thin catalyst layer directly deposited on Nafion membrane surface.  相似文献   

5.
The electrochemical activity of high performance unsupported (1:1) Pt–Ru electrocatalyst in the presence of hydrogen and carbon monoxide has been studied using the thin-film rotating disk electrode (RDE) technique. The kinetic parameters of these reactions were determined in H2- and CO-saturated 0.5 M H2SO4 solutions by means of cyclic voltammetry, including CO stripping, and RDE voltammetry. Pt–Ru/Nafion inks were prepared in one step with different Nafion mass fractions, allowing determining the ionomer influence in electrocatalytic response and obtaining the kinetic current density in absence of mass-transfer effects, being 41 and 12 mA cm2 (geometrical area), for H2 and CO oxidation, respectively. These values correspond to mass activities of 1.37 and 0.40 A mgPt1 and to specific activities of 1.52 and 0.44 mA cmPt2. The Tafel analysis confirmed that hydrogen oxidation was a two-electron reversible reaction, while CO oxidation exhibited an irreversible behavior with a charge-transfer coefficient of 0.42. The kinetic results for CO oxidation are in agreement with the bifunctional theory, in which the reaction between Pt–CO and Ru–OH is the rate-determining step. The exchange current density for hydrogen reaction was 0.28 mA cm2 (active surface area), thus showing similar kinetics to those found for carbon-supported Pt and Pt–Ru electrocatalyst nanoparticles.  相似文献   

6.
According to the conventional MEA test, methanol and water crossover are the main factors to determine performance of a passive DMFC. Thus, to ensure the high cell performance of a passive DMFC using high concentration methanol of 50–95 vol%, the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol, a hydrophobic layer to reduce water crossover, and a hydrophilic layer to enhance the water recovery from the cathode to the anode. The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover. In spite of the operation with 95 vol% methanol, the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1 mW cm−2 and maintains a high power density of 30 mW cm−2 (0.405 V) under constant current operation.  相似文献   

7.
Various silica particles were adopted as catalyst supports, and silica-supported PtRu catalysts were evaluated as catalysts for the anode of direct methanol fuel cells at methanol concentrations of 1–10 M through single cell tests. Compared to a carbon black supported Pt–Ru catalysts, the silica-supported Pt–Ru catalysts exhibited higher performance in MEA, especially with high concentration over 3 M, and the maximum power density reached to 90 mW cm−2 and 60 mW cm−2 with 5 M and 10 M, respectively, which were 1.5 and 3 times higher than the reference carbon black supported catalysts. It was found that the silica particles as a catalyst support have a significant effect on reduction of methanol crossover and control of fuel feeding. Such a high performance in the operation with high concentrations was confirmed in the long-term durability test.  相似文献   

8.
This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.  相似文献   

9.
The fuel cell performance (DMFC and H2/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 0.5 M methanol was 145 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 136 mW cm−2. The power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 2.0 M methanol was 144.5 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 143 mW cm−2.  相似文献   

10.
An ultra-low platinum loading membrane electrode assembly (MEA) with a novel double catalyst layer (DCL) structure was prepared by using two layers of platinum catalysts with different loadings. The inner layer consisted of a high loading platinum catalyst and high Nafion content for keeping good platinum utilization efficiency and the outer layer contained a low loading platinum catalyst with low Nafion content for obtaining a proper thickness thereby enhancing mass transfer in the catalyst layers. Polarization characteristics of MEAs with novel DCL, conventional DCL and single catalyst layer (SCL) were evaluated in a H2–air single cell system. The results show that the performance of the novel DCL MEA is improved substantially, particularly at high current densities. Although the platinum loadings of the anode and cathode are as low as 0.04 and 0.12 mg cm−2 respectively, the current density of the novel DCL MEA still reached 0.73 A cm−2 at a working voltage of 0.65 V, comparable to that of the SCL MEA. In addition, the maximum power density of the novel DCL MEA reached 0.66 W cm−2 at 1.3 A cm−2 and 0.51 V, 11.9% higher than that of the SCL MEA, indicative of improved mass transfer for the novel MEA. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) tests revealed that the novel DCL MEA possesses an efficient electrochemical active layer and good platinum utilization efficiency.  相似文献   

11.
A new alkyl chain modified sulfonated poly(ether sulfone) (mPES) was synthesized and formed into membranes. The MEAs were tested in the PEMFC and evaluated systematically in the DMFC by varying the methanol concentration from 0.5 to 5.0 M at 60 °C and 70 °C. The synthesized mPES copolymer has been characterized by nuclear magnetic resonance spectroscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The proton conductivity of the resulting membrane is higher than the threshold value of 10−2 S cm−1 at room temperature for practical PEM fuel cells. The membrane is insoluble in boiling water, thermally stable until 250 °C and shows low methanol permeability. In the H2/air PEMFC at 70 °C, a current density of 600 mA cm−2 leads to a potential of 637 mV and 658 mV for 50 μm thick mPES 60 and Nafion NRE 212, respectively. In the DMFC, mPES 60's methanol crossover current density is 4 times lower than that for Nafion NRE 212, leading to higher OCV values and peak power densities. Among all investigated conditions and materials, the highest peak power density of 120 mW cm−2 was obtained with an mPES 60 based MEA at 70 °C and a methanol feed of 2 M.  相似文献   

12.
A simple drop-cast method to directly deposit Nafion polymer electrolyte membrane (PEM) on nanostructured thin-film catalyst layer composed of stacked Pt nanoparticles prepared by pulsed laser deposition (PLD) was demonstrated. Through optimization of solvent composition and drying temperature of Nafion solution to control self-organization of Nafion, a uniform PEM with better bulk and interface microstructures could be produced, leading to a significant improvement in the output current density of a PEM fuel cell over that using reference commercial PEMs. The formation of facile proton conduction pathways in the bulk Nafion membrane resulted in a 35% reduction in ohmic resistance compared to that with the commercial membrane. Moreover, the infiltration of Nafion in the catalyst layer formed suitable proton transport network to render more catalyst nanoparticles effective and thus lower charge-transfer resistance. With the optimized PLD, drop-cast, and hot-pressing conditions, the current density of PEMFCs using drop-casted PEM reached 1902 mA cm−2 at 0.6 V at 2 atm H2 and O2 pressures with a cathode Pt loading of 100 μg cm−2, corresponding to a power density of 1.14 W cm−2 and a cathode mass-specific power density of 11.4 kW g−1.  相似文献   

13.
This study reports a novel strategy by using polyaniline nanofibers (PANFs) to modify membrane-electrode assembly (MEA) for improving direct methanol fuel cell (DMFC) performance. First of all, a series of PANFs emeraldine salt was synthesized and characterized. Then, we investigated the effect of PANFs layout in MEA on DMFC performance. Three different placements to incorporate the as-synthesized PANFs in anodes include (1) placing a layer of PANFs between catalyst layer (CL) and proton exchange membrane (PEM), (2) mixing with catalyst slurry and coating onto gas diffusion layer (GDL), and (3) placing a layer of PANFs between CL and GDL. Polarization curves indicate that the third method is superior to the others and is adopted as the incorporation layout thereafter. Both methanol transport resistance and methanol crossover of the PANFs-modified MEA are studied further. The DMFC incorporated with H2SO4-doped PANFs obtained after the re-doping process with 2 mol L−1 H2SO4 performs a power density as high as 53 mW cm−2, about 20% higher than that of the pristine one without PANFs incorporation. However, an excessive doping level may result in a higher methanol transport resistance due to PANFs aggregation and thus deteriorate DMFC performance. This study provides a simple and effective way by placing a layer of PANFs between CL and GDL in anode to act as methanol transport regulator and improve DMFC performance consequently.  相似文献   

14.
A direct alkaline fuel cell with a liquid potassium hydroxide solution as an electrolyte is developed for the direct use of methanol, ethanol or sodium borohydride as fuel. Three different catalysts, e.g., Pt-black or Pt/Ru (40 wt.%:20 wt.%)/C or Pt/C (40 wt.%), with varying loads at the anode against a MnO2 cathode are studied. The electrodes are prepared by spreading the catalyst slurry on a carbon paper substrate. Nickel mesh is used as a current-collector. The Pt–Ru/C produces the best cell performance for methanol, ethanol and sodium borohydride fuels. The performance improves with increase in anode catalyst loading, but beyond 1 mg cm−2 does not change appreciably except in case of ethanol for which there is a slight improvement when using Pt–Ru/C at 1.5 mA cm−2. The power density achieved with the Pt–Ru catalyst at 1 mg cm−2 is 15.8 mW cm−2 at 26.5 mA cm−2 for methanol and 16 mW cm−2 at 26 mA cm−2 for ethanol. The power density achieved for NaBH4 is 20 mW cm−2 at 30 mA cm−2 using Pt-black.  相似文献   

15.
A series of thin Pt films were deposited by dc magnetron sputtering directly on a commercial hydrophobic carbon paper substrate having a thin microporous Vulcan-XC72 layer or upon a thin Ti sublayer sputtered on the top of the microporous carbon film. The electrocatalytic properties of the sputtered Pt films toward the oxygen reduction reaction were investigated in 0.5 M H2SO4 solution and in a hydrogen PEM fuel cell. The catalyst with ultralow Pt loading of 22 μg cm−2 deposited on a 33 Å thick Ti sublayer is robust, mechanically stable, possesses highly developed surface area and improved catalytic efficiency. Its performance as a MEA cathode in a single hydrogen PEM fuel cell (577 mA cm−2 at 0.4 V cell voltages and a maximum power of 0.954 W) proved to be much superior compared to that of MEA with the same cathode Pt loading but without Ti sublayer (173 mA cm−2 at 0.4 V, 0.231 W, respectively).  相似文献   

16.
It is well known that the membrane electrode assembly (MEA) of proton exchange membrane fuel cells (PEMFCs) can undergo deterioration, during long term operation, of both the electrode materials and the membrane. Hydrogen crossover, i.e., the undesired diffusion of the gas from the anode to the cathode through the membrane, has been ascribed as one of the main causes of deterioration of perfluorinated ionomer membranes, normally employed in PEMFCs. One of the effects of the hydrogen permeation across the membrane is the decrease of the cell's open circuit voltage (OCV), due to the reaction between the fuel and the oxidant at the cathode surface. Such reaction can lead to the production of peroxide radicals, causing the degradation of both the PEM and the catalyst layer. Hydrogen crossover increases when temperature, pressure and humidity of the cell rise. The hydrogen permeation rate through a very thin PEM is typically lower than 1 mA cm−2 for a new MEA, but it can exceed 10-20 mA cm−2 after long term operation. Various methods have been proposed to measure the rate of hydrogen crossover, mainly based on electrochemical tests on a single FC with a flow of nitrogen at the cathode, so that the steady state current corresponds to the oxidation of crossed hydrogen. Hydrogen crossover has been also determined indirectly by assuming that the changes in the OCV values are due to the passage of fuel from the anode to the cathode.In this paper, a simplified mathematical model for the direct determination of hydrogen crossover permeation rate is presented. Such a model is based on analytical expressions of the polarization terms and it is employed to determine the hydrogen crossover rate. The main results show that the hydrogen crossover current densities increased from 0.12 to 0.32 mA cm−2, by decreasing the thickness of the membranes and increasing the operating cell temperature. Moreover, the hydrogen crossover determined for a fresh MEA was compared with that of a degraded one, exposed to repetitive freezing/thawing cycles. It was found that the hydrogen crossover for the degraded MEA was more than twice the value obtained with the fresh one at the same temperature.  相似文献   

17.
The aim of this work consists in to incorporate organic compounds as PAMAM (Poly-amidoamine) dendrimers into the polymeric Nafion matrix to prepare composite membranes as a possible alternative to reduce methanol crossover effect. Composite Nafion membranes were prepared using a 3 wt% of Generation-4 hydroxyl-terminated PAMAM (G4OH) dendrimers containing 64-terminal OH-functional groups. The influence of PAMAM-(G4OH) dendrimer on chemical–physical properties of the composite membrane was highlighted resulting in a reduction of the methanol permeability (1.05 × 10−6 cm2 s−1) if compared to a recast bare Nafion membrane (8.19 × 10−6 cm2 s1), used as a reference. Good proton conductivity was also observed for PAMAM-(G4OH) composite membrane. The polarization curves carried out at 100 °C in the presence of 2 M methanol have revealed the higher performance of the PAMAM-(G4OH) membrane when compared to a recast Nafion membrane.  相似文献   

18.
One of the major challenges for direct methanol fuel cells is the problem of methanol crossover. With the aim of solving this problem without adverse effects on the membrane conductivity, Nafion/Palladium–silica nanofiber (N/Pd–SiO2) composite membranes with various fiber loadings were prepared by a solution casting method. The silica-supported palladium nanofibers had diameters ranging from 100 nm to 200 nm and were synthesized by a facile electro-spinning method. The thermal properties, ionic exchange capacities, water uptake, proton conductivities, methanol permeabilities, chemical structures, and micro-structural morphologies were determined for the prepared membranes. It was found that the transport properties of the membranes were affected by the fiber loading. All of the composite membranes showed higher water uptake and ion exchange capacities compared to commercial Nafion 117 and proved to be thermally stable for use as proton exchange membranes. The composite membranes with optimum fiber content (3 wt%) showed an improved proton conductivity of 0.1292 S cm−1 and a reduced methanol permeability of 8.36 × 10−7 cm2 s−1. In single cell tests, it was observed that, the maximum power density measured with composite membrane is higher than those of commercial Nafion 117.  相似文献   

19.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   

20.
Protonated polyaniline (PANI) is directly polymerized on Nafion 117 (N117), forming a composite membrane, to act as a methanol-blocking layer to reduce the methanol crossover in the direct methanol fuel cell (DMFC), which is beneficial for the DMFC operating at high methanol concentration. The PANI layer grown on the N117 with a thickness of 100 nm has an electrical conductivity of 13.2 S cm−1. The methanol permeability of the PANI/N117 membrane is reduced to 59% of that of the N117 alone, suggesting that the PANI/N117 can effectively reduce the methanol crossover in the DMFC. Comparison of membrane-electrode-assemblies (MEA) using the conventional N117 and the newly developed PANI/N117 composite shows that the PANI/N117-based MEA outputs higher power at high methanol concentration, while the output power of the N117-based MEA is reduced at high methanol concentration due to the methanol crossover. The maximum power density of the PANI/N117-based MEA at 60 °C is 70 mW cm−2 at 6 M methanol solution, which is double the N117-based MEA at the same methanol concentration. The resistance of PANI/N117 composite membrane is reduced at elevated methanol concentration, due to the hydrogen bonding between methanol and PANI pushes the polymer chains apart. It is concluded that the PANI/N117-based MEA performs well at elevated methanol concentration, which is suitable for the long-term operation of the DMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号