首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct methanol fuel cell operation with uniaxially pre-stretched recast Nafion® membranes (draw ratio of 4) was investigated and compared to that with commercial (un-stretched) Nafion®. The effects of membrane thickness (60–250 μm) and methanol feed concentration (0.5–10.0 M) on fuel cell power output were quantified for a cell temperature of 60 °C, ambient pressure air, and anode/cathode catalyst loadings of 4.0 mg cm−2. Pre-stretched recast Nafion® in the 130–180 μm thickness range produced the highest power at 0.4 V (84 mW cm−2), as compared to 58 mW cm−2 for Nafion® 117. MEAs with pre-stretched recast Nafion® consistently out-performed Nafion® 117 at all methanol feed concentrations, with 33–48% higher power densities at 0.4 V, due to a combination of low area-specific resistance (the use of a thinner pre-stretched membrane, where the conductivity was the same as that for commercial Nafion®) and low methanol crossover (due to low methanol solubility in the membrane). Very high power was generated with a 180-μm thick pre-stretched recast Nafion® membrane by increasing the cell temperature to 80 °C, increasing the anode/cathode catalyst loading to 8.0 mg cm−2, and increasing the cathode air pressure to 25 psig. Under these conditions the power density at 0.4 V for a 1.0-M methanol feed solution was 240 mW cm−2 and the maximum power density was 252 mW cm−2.  相似文献   

2.
Modified Nafion membranes by self-assembling of palladium composite nanoparticles were successfully synthesized and used for the reduction of methanol crossover in Direct Methanol Fuel Cells (DMFC). The positively charged polydiallyldimethylammonium (PDDA) was used for stabilizing the palladium nanoparticles. Modified and unmodified membranes were tested in a DMFC at 30 °C and 50 °C. The performance of the DMFC using modified membranes with different composite nanoparticles (i.e., Pd/PDAA ratios) and self-assembling times was compared with that using an unmodified membrane. The modified Nafion membranes proved to reduce the methanol crossover in ca. 10% – 35%, depending on the self-assembling time, nanoparticles composition and test temperature. However, a decrease in the performance was observed mainly for the modified membrane with the higher PDDA content due to a decrease in the proton conductivity. On the other hand, the membrane modified with nanoparticles containing less PDDA and tested at 50 °C showed similar performance as the unmodified one. Additionally, the fuel cell efficiencies obtained for all the modified membranes at both temperatures were similar or higher than the unmodified one.  相似文献   

3.
This study examined methanol crossover through PtRu/Nafion composite membranes for the direct methanol fuel cell. For this purpose, 0.03, 0.05 and 0.10 wt% PtRu/Nafion composite membranes were fabricated using a solution impregnation method. The composite membrane was characterized by inductively coupled plasma-mass spectroscopy and thermo-gravimetric analysis. The methanol permeability and proton conductivity of the composite membranes were measured by gas chromatography and impedance spectroscopy, respectively. In addition, the composite membrane performance was evaluated using a single cell test. The proton conductivity of the composite membrane decreased with increasing number of PtRu particles embedded in the pure Nafion membrane, while the level of methanol permeation was retarded. From the results of the single cell test, the maximum performance of the composite membrane was approximately 27% and 31% higher than that of the pure Nafion membrane at an operating temperature of 30 and 45 °C, respectively. The optimum loading of PtRu was determined to be 0.05 wt% PtRu/Nafion composite membrane.The PtRu particles embedded in the Nafion membrane act as a barrier against methanol crossover by the chemical oxidation of methanol on embedded PtRu particles and by reducing the proton conduction pathway.  相似文献   

4.
This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.  相似文献   

5.
This study investigates an aqueous solution of sulfuric acid that serves as the liquid electrolyte (LE) in a passive direct methanol fuel cell (DMFC). The addition of an LE can reduce methanol crossover and increase the fuel utilization significantly. To improve the performance of an LE-DMFC, a mathematical model is developed to optimize the thicknesses of both the LE layer and the Nafion membrane. The maximum power density of the LE-DMFC is improved by approximately 30% compared with a conventional DMFC (C-DMFC) when each is fed by methanol solutions of the same concentration. Due to the low methanol crossover of the LE-DMFC, a highly concentrated methanol solution can be directly fed into the LE-DMFC. The discharge time and volume energy density of the LE-DMFC are two times longer and three times greater than those of the C-DMFC, respectively. In addition, fuel utilization increases by approximately 100%.  相似文献   

6.
A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs.  相似文献   

7.
Two composite electrode structures for direct methanol fuel cells comprising an outer, middle and an inner catalyst layers, are proposed to suppress methanol crossover and improve the utilization efficiency of methanol fuel. These two composite anodes have structures I and II, and are prepared by a combination of screen-printing, direct-printing and impregnation–reduction (IR) methods. The inner layer of these two composite anodes, which are prepared by IR method, is a layer of nanometer-sized Pt37–Ru63/Pt or Pt37–Ru63/Pt20–Ru80 catalyst particles deposited in the PEM anode side serving as the reactive methanol filter layer. The suppression of methanol crossover and the membrane electrode assembly (MEA) performance of the proposed structures are compared to those of the normal-MEA structure with PEM without IR treatment. The mechanisms of the suppression of methanol crossover are investigated. Experimental results show that the MEA-I and MEA-II improve the suppression of methanol crossover by up to 22% and 33% compared to the normal-MEA structure, respectively, and yield a 12% and 18% better MEA performance than the normal-MEA structure, respectively. The filtering and electrode effects of a layer of nanometer-sized Pt37–Ru63/Pt or Pt37–Ru63/Pt20–Ru80 catalyst particles deposited in the PEM anode side contribute to the suppression of methanol crossover and performance enhancement.  相似文献   

8.
In the present study, the effect of chemical treatment on graphite nanofiber supports (GNFs) with various concentrations of nitric acid was investigated for methanol electro-oxidation. To optimize the electrocatalytic activity, PtRu catalysts were deposited on GNF supports by the impregnation method. The surface and structural properties of the GNF supports were characterized by X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), and X-ray diffraction (XRD). The morphology of the catalysts was characterized by transmission electron microscopy (TEM). The electrocatalytic activity of PtRu/GNF catalysts was investigated by cyclic voltammetry. Oxygen functional groups were introduced on the GNF supports by the addition of nitric acid. Increasing the concentration of nitric acid caused a subsequent increase in the presence of oxygen functional groups, which resulted in smaller catalyst particle size and a higher loading of the catalyst. The electrocatalytic activity of the catalysts for methanol oxidation was also improved with these treatments. Consequently, it was found that chemical treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for direct methanol fuel cells (DMFCs).  相似文献   

9.
We compared the performance of the membrane electrode assembly for direct methanol fuel cells (DMFCs) composed of a pore-filling polymer electrolyte membrane (PF membrane) with that composed of a commercial Nafion-117 membrane. In DMFC tests, the methanol crossover flux was 23% lower in the PF membrane than in the Nafion-117 membrane even though the thickness of the PF membrane was 43% that of Nafion-117. This led to a higher DMFC performance and the lower overpotential of the cathode of the PF membrane. Feeding an aqueous 10 M methanol solution at 50 °C produced a low cathode overpotential, as low as 0.40 V at 0.2 A in the PF membrane, whereas the potential was 0.65 V at 0.2 A in the Nafion-117 membrane. In contrast, the ohmic loss and anode overpotential were almost the same in the two membranes. We confirmed that a reduction in methanol crossover using the PF membrane results in lower cathode overpotential and higher DMFC performance. In addition, the electro-osmotic coefficient was estimated as 1.3 in the PF membrane and 2.6 in Nafion-117, based on a water mass-balance model and values showing that the PF membrane prevents the flooding of the cathode at a low gas flow rate using. A highly concentrated methanol solution can be applied as a fuel without decreasing DMFC performance using PF membranes.  相似文献   

10.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

11.
Platinum (Pt) and platinum–ruthenium (PtRu) nanoparticles supported on Vulcan XC-72 carbon and single-wall carbon nanotubes (SWCNT) are prepared by a microwave-assisted polyol process. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which are uniformly dispersed on carbon, have diameters of 2–6 nm. All the PtRu/C catalysts display the characteristic diffraction peaks of a face centred cubic Pt structure, excepting that the 2θ values are shifted to slightly higher values. The results from XPS analysis reveal that the catalysts contain mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV) and Ru(IV). The electrooxidation of methanol is studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Both PtRu/C catalysts have high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a single direct methanol fuel cell using the SWCNT supported PtRu alloy as the anode catalyst delivers high power density.  相似文献   

12.
PtRu/CNTs and PtRuMo/CNTs catalysts have been synthesized by microwave-assisted polyol process and used as the anode catalysts for a direct methanol fuel cell (DMFC). The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The effect of different anode catalysts, membrane electrode assembly (MEA) activation, methanol concentration, methanol flow rate, oxygen flow rate and cell temperature on the DMFC performance has been investigated. The results show that the PtRu or PtRuMo particles with face-centered cubic structure are uniformly distributed on CNTs, and the addition of Mo to PtRu/CNTs makes the binding energies of each Pt species shift to lower values. PtRuMo/CNTs is a promising anode catalyst for DMFCs, and the appropriate operating conditions of the DMFC with PtRuMo/CNTs as the anode catalyst are MEA activation for 10 h, 2.0–2.5 M methanol at the flow rate of 1.0–2.0 mL/min, and oxygen at the flow rate of 100–150 mL/min. The DMFC performance increases significantly with an increase in cell temperature.  相似文献   

13.
A three-dimensional model has been developed for the free-breathing direct methanol fuel cell (DMFC) assuming steady-state isothermal and single-phase conditions. Especially the MeOH crossover phenomenon is investigated and the model validations are done using previous cathodic current distribution measurements. A free convection of air is modelled in the cathode channels and diffusion and convection of liquid (anode) and gaseous species (cathode) in the porous transport layers. The MeOH flow in the membrane is described with diffusion and protonic drag. The parameter ψψ in the model describes the MeOH oxidation rate at the cathode and it is fitted according to the measured current distributions. The model describes the behaviour of the free-breathing DMFC, when different operating parameters such as cell temperature, MeOH concentration and flow rate are varied in a wide range. The model also predicts the existence of the experimentally observed electrolytic domains, i.e. local regions of negative current densities. Altogether, the developed model is in reasonable agreement with both the measured current distributions and polarization curves. The spatial information gained of mass transfer phenomena inside the DMFC is valuable for the optimization of the DMFC operating parameters.  相似文献   

14.
The methanol crossover and other mass transfer phenomena have been investigated in a free-breathing direct methanol fuel cell (DMFC). The current distribution profile along the MeOH flow channel was measured and information of local concentrations of the reacting species was obtained. The DMFC with a segmented cathode was found to be very useful for a detailed analysis of the interrelated parameters, which cause the local variations of the cell current. The connections between different operating parameters were clarified in detail for two different membranes. The measurements were done for both an experimental poly(vinylidene fluoride)-graft-poly(styrene sulfonic acid) (PVDF-g-PSSA) membrane and the commercial Nafion® 117 membrane, which have different methanol permeabilities. The MeOH concentration and the flow rate were varied in a wide range in order to determine their optimum values. The deviations from an even current density distribution were observed to increase as a function of MeOH concentration and decrease as a function of temperature. The power production of a free-breathing DMFC was observed to be proportional to the local oxygen concentration at the cathode side and inadequate air convection together with the MeOH crossover phenomenon was observed to decrease the cell performance locally.  相似文献   

15.
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm−2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.  相似文献   

16.
Commercial Nafion®-115 (trademark registered to DuPont) membranes were modified by in situ polymerized phenol formaldehyde resin (PFR) to suppress methanol crossover, and SO3 groups were introduced to PFR by post-sulfonatation. A series of membranes with different sulfonated phenol formaldehyde resin (sPFR) loadings have been fabricated and investigated. SEM-EDX characterization shows that the PFR was well dispersed throughout the Nafion® membrane. The composite membranes have a similar or slightly lower proton conductivity compared with a native Nafion® membrane, but show a significant reduction in methanol crossover (the methanol permeability of sPFR/Nafion® composite membrane with 2.3 wt.% sPFR loading was 1.5 × 10−6 cm2 s−1, compared with the 2.5 × 10−6 cm2 s−1 for the native Nafion® membrane). In direct methanol fuel cell (DMFC) evaluation, the membrane electrode assembly (MEA) using a composite membrane with a 2.3 wt.% sPFR loading shows a higher performance than that of a native Nafion® membrane with 1 M methanol feed, and at higher methanol concentrations (5 M), the composite membrane achieved a 114 mW cm−2 maximum power density, while the maximum power density of the native Nafion® was only 78 mW cm−2.  相似文献   

17.
In a high-concentration direct methanol fuel cell (HC-DMFC), the methanol crossover is typically decreased to an acceptable level by two main mechanisms: high methanol transport resistance between the anode reservoir and the membrane electrode assembly (MEA), and high water back flow from the cathode to the anode. Based on the semi-passive HC-DMFC fabricated in this work, the effects of methanol barrier layer (MBL) thickness and electrolyte membrane thickness on cell performance, methanol and water crossover, and fuel efficiency have been studied. The results showed that a thicker MBL could significantly decrease the methanol and water crossover by increasing the mass transport resistance between the anode reservoir and the MEA, while a thinner Nafion® membrane could also significantly decrease the methanol and water crossover by enhancing the water back flow from the cathode through the electrolyte membrane to the anode. Using Nafion® 212 as the electrolyte membrane, and a 6.4 mm porous PTFE plate as the MBL, a semi-passive HC-DMFC operating at 70 °C produced the maximum power density of 115.8 mW cm−2 when 20 M methanol solution was fed as the fuel.  相似文献   

18.
The application of platinum supported on polytetrafluoroethylene (Pt/PTFE) as a composite catalyst for the separation of hydrogen isotopes holds much promise but warrants further refinement for improved performance. The objective of the present study was to examine the performance of a new hydrophobic Pt/PTFE catalyst during hydrogen-water exchange-based deuterium separation. The influence of diverse factors such as flow rate, column height, temperature, the volume ratio of filler to catalyst, and flow mode (co-current or counter-current), and so on, on catalytic performance was investigated. The deuterium conversion rate from co-current exchange was superior to that from counter-current exchange. Decreasing the hydrogen flow rate, increasing the feed water flow rate, and decreasing the molar flow ratio of hydrogen to water improved the deuterium conversion rate. In terms of layered filling of the catalyst column, adding more hydrophilic fillers improved the deuterium conversion rate. The characterization results highlight the high catalytic activity of the Pt/PTFE catalyst for hydrogen-water exchange, as well as its high stability in water.  相似文献   

19.
CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst was grown on an Al2O3 foam ceramic by a one-step hydrothermal process, while a naked Al2O3 foam ceramic and an Al2O3 foam ceramic grown with ZnO nanorods that directly impregnated into the catalyst precursor solution were also fabricated simultaneously. The morphology, composition, redox property and specific surface area of catalysts on the three ceramics were investigated in detail. The catalyst-loaded ceramics were used as catalyst supports in a microreactor to study the catalytic performance for methanol steam reforming. Results showed that the microreactor with Al2O3 support grown with nanoflowers catalyst achieved 99.8% methanol conversion rate, 0.16 mol/h H2 flow rate at 310 °C, and an inlet methanol flow rate of 0.048 mol/h. Moreover, the microreactor exhibited 92% methanol conversion rate after 30 h continuous reaction.  相似文献   

20.
The statistical design-of-experiment method was used to identify the significant factors for making a manganese oxide-loaded activated carbon matrix. The carbon matrixes, which were made by reacting KMnO4 with carbon material, were tested as gas-diffusion electrodes for oxygen reduction. Three factors—KMnO4 concentration, reaction temperature, and reaction duration were tested in a two-level full-factorial design-of-experiment. The modification of carbon morphology and its effect on the performance of oxygen reduction are discussed. Temperature, KMnO4 concentration, and the interaction between temperature and reaction time were found to have a significant influence on the catalytic activity of the manganese oxide-loaded carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号