首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological, optical and photocatalytic properties of TiO2, Fe2O3 and TiO2–Fe2O3 samples (formed by 1, 3 and 5 coatings) were studied. The layers were deposited on glass substrate by the sol–gel method. The catalytic activity of the samples was studied by the photodecomposition of methylene blue (MB) under visible light illumination. The FTIR results indicate that all samples present surface OH radicals that are bound either to the Ti or Fe atoms. This effect is better visualized at larger number of coatings in the TiO2–Fe2O3/glass systems. Also, two mechanisms are observed during the photodecomposition of the MB.  相似文献   

2.
We successfully fabricated cost-effective and efficient pulse electrodeposited Fe2O3 photoanodes for PEC water splitting application. Surface modifications of Fe2O3 by oxygen evolution catalysts like cobalt phosphate (Co–Pi), a monoclinic BiVO4 or both showed cathodic/anodic shift in photocurrent with significantly improved photo-response.  相似文献   

3.
To investigate the mechanisms of the improvement on separation efficiency of photogenerated carriers, a Fe2O3/SrTiO3 heterojunction semiconductor with an improved separation efficiency was successfully prepared. The heterojunction semiconductor was characterized with X-ray diffraction (XRD), UV–vis absorption spectrum, scanning electron microscope (SEM) and surface photovoltage (SPV) spectroscopy. The energy band diagrams of Fe2O3 and SrTiO3 were determined with X-ray photoelectron spectroscopy (XPS), based on which the conduction band offset (CBO) between Fe2O3 and SrTiO3 was quantified to be 1.26 ± 0.03 eV. The recombination of photogenerated carriers was investigated with photoluminescence (PL) spectrum, which indicates that the formation of Fe2O3/SrTiO3 decreases the recombination. Thus the improved separation efficiency is mainly due to the energy difference between the conduction band edges of Fe2O3 and SrTiO3, and the decreased electron-hole recombination for Fe2O3/SrTiO3.  相似文献   

4.
Bilayer photoanodes were prepared onto glass substrates (FTO) in order to improve generated photocurrents using UV-vis light by water splitting process. A comparative study of photocatalytic was performed over the films surface using Fe2O3, WO3 and mixture of bicomponents (Fe2O3:WO3). Different types of films were prepared using Fe2O3, WO3 and bicomponents (mixture) on FTO substrates. The films were grown by sol gel method with the PEG-300 as the structure-directing agent. The photo-generated of the samples were determined by measuring the currents and voltages under illumination of UV-vis light. The morphology, structure and related composition distribution of the films have been characterized by SEM, XRD and EDX respectively. Photocurrent measurements indicated surface roughness as the effective parameter in this study. The deposited surfaces by bicomponents or mixture are flat without any feature on the surface while the deposited surfaces by WO3 appears rough surface as small round (egg-shaped particles) and cauliflower-like. The surface deposited by Fe2O3 show rough no as well as WO3 surface. The deposited surfaces by WO3 reveal the higher value of photocurrent measurement due to surface roughness. Indeed, the roughness can be effective in increasing contact surface area between film and electrolyte and diffuse reflection (light scattering effect). The solution (Fe2O3:WO3) shows the low photocurrent value in compare to WO3 and Fe2O3 hat it may be due to decomposition the compound at 450 ± 1 °C to iron-tungstate Fe2(WO4)3.  相似文献   

5.
Microcrystals of In2S3 were formed on sintered In2O3 pellets by sulfurizing in H2S atmosphere. The flat band potential of compound In2S3|In2O3 electrodes was evaluated as −1.0 V vs Ag|AgCl in 1 M KOH, 1 M Na2S, 10−2 M S. Significantly enhanced photocurrent was observed on compound In2S3|In2O3 electrodes with a lower degree of sulfurization to that of compound In2S3|In2O3 electrodes with higher degree of sulfurization. Photocurrent generation of compound In2S3|In2O3 electrodes was explained from the viewpoint of semiconductor sensitization.  相似文献   

6.
Fe2O3 nanostructures photoanodes were prepared via sol–gel spin-coating method onto fluorine-doped tin oxide glass substrates using six different surfactants: polyethylene glycol (PEG-300), Triton X-100, pluronic F127, cetyltrimethylammonium bromide (CTAB), octadecyltrimethylammonium bromide (OTAB) and tetradecyltrimethylammonium bromide (TTAB). The resulting films have thickness from 520 ± 10 to 980 ± 10 nm after calcinations at 450 °C in the air. A comparative study of photocatalytic activity of thin films was performed. The photo-generated samples were determined by measuring the currents and voltages under illumination of UV–vis light. The highest photocurrent density of 1.77 mA/cm2 at 1 V/SCE, under illumination intensity of 100 mW cm−2 from a solar simulator with a global AM 1.5 filter, were produced by TTAB treated sample. The optical properties, morphology, surface roughness and structure of the films were also characterized by UV–visible spectroscopy, SEM, AFM and XRD. The results are consistent with photocatalytic performance: TTAB treated sample has the highest grain size and optical absorption. The improved performance of this sample can be attributed to the crystallinity process of TTAB, which leads to the larger grain size and highest photocatalytic activity. The study demonstrates that photoelectrochemical performance of metal oxide can be improved by simply changing surfactant. The results highlighted the superior performance of cationic surfactants over non-ionic surfactants in preparing Fe2O3 photoanodes by sol–gel method. Moreover, the study showed that decreasing hydrocarbon tail of cationic surfactants can increase the crystallite size and improve photocatalytic activity.  相似文献   

7.
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4.  相似文献   

8.
Functional carbon nanotubes (CNTs) were incorporated into Ti-doped Fe2O3 thin films by a facile, one-step co-electrodeposition method. The films were characterized by X-ray diffraction, scanning electron microscopy, UV–visible absorption, and X-ray photoelectron spectroscopy. The introduction of CNTs results in a better absorption in visible region and greatly enhances the photoelectrochemical properties of the Ti–Fe2O3 films. The improved photoelectrochemical properties of the CNTs and Ti co-doped Fe2O3 films are due to the charge equilibration which interplays between the Ti–Fe2O3 and CNTs. The effect of CNTs to mediate fast charge transfer and to retard charge recombination rate in the composites is also demonstrated by kinetics analysis and electrochemical impedance spectroscopy. The influence of different groups-modified CNTs and different content of CNTs was also studied. The highest photocurrent is 4.5 mA/cm2 at 1.23 V (vs. RHE) obtained by incorporating 0.10 mg/mL amino-group modified CNTs in the Ti–Fe2O3 film. The amino-functionalized CNTs doped film exhibits the highest photoelectric response compared with those doped by the pristine and acid-treated CNTs under the same conditions, which can be ascribed to the better hydrophilicity and dispersibility of the amino-functionalized CNTs.  相似文献   

9.
Selective catalytic reduction (SCR) of NO from simulated flue gas by ammonia with Fe2O3 particles as the catalyst was performed using a magnetically fluidized bed (MFB). X-ray diffraction (XRD) spectroscopy and Brunauer–Emmett–Teller (BET) method were used to analyze Fe2O3 catalyst. Important effects of magnetic fields were observed in the SCR of NO by ammonia over Fe2O3 catalyst. The apparent activation energies of SCR were reduced by external magnetic fields, and the SCR activity of Fe2O3 catalyst was improved with the magnetic fields at low temperatures. Thus the scope of temperature with high efficiency of NO removal was extended from 493–523 K to 453–523 K by magnetic fields. Magnetic fields of 0.01–0.015 T were suggested for NO removal on Fe2O3 catalyst with MFB. The results suggested that the magnetoadsorption of NO onto Fe2O3 surface together with NH2 and NO free radicals effects induced by the external magnetic fields both acted to improve the rate of SCR of NO on Fe2O3 catalyst. On the other hand, magnetic field effects were also attributed to improved gas–solid contact in MFB.  相似文献   

10.
The physical properties and photoelectrochemical characterization of the spinel ZnFe2O4, elaborated by chemical route, have been investigated for the hydrogen production under visible light. The forbidden band is found to be 1.92 eV and the transition is indirectly allowed. The electrical conduction occurs by small polaron hopping with activation energy of 0.20 eV. p-type conductivity is evidenced from positive thermopower and cathodic photocurrent. The flat band potential (0.18 VSCE) determined from the capacitance measurements is suitably positioned with respect to H2O/H2 level (−0.85 VSCE). Hence, ZnFe2O4 is found to be an efficient photocatalyst for hydrogen generation under visible light. The photoactivity increases significantly when the spinel is combined with a wide band gap semiconductor. The best performance with a hydrogen rate evolution of 9.2 cm3 h−1 (mg catalyst)−1 occurs over the new hetero-system ZnFe2O4/SrTiO3 in Na2S2O3 (0.025 M) solution.  相似文献   

11.
Nano-sized Fe2O3-loaded carbon material was prepared by loading Fe2O3 on carbon using various carbonaceous materials. Carbonaceous materials strongly affected the electrochemical behavior of nano-sized Fe2O3-loaded carbon. Among the carbons used, nano-carbons such as acetylene black (AB), tubular carbon nanofibers (CNF), and platelet CNF provided larger capacities than other carbons. This may be due to the greater surface area of nano-carbon, which gives a greater distribution of nano-sized Fe2O3 particles than other carbons and delivers a greater capacity than other carbons. Investigation of the first-cycle materials by X-ray photoelectron spectroscopy (XPS) revealed that Fe2O3 was reduced to Fe metal in the charge process (reduction of Fe2O3), and, conversely, Fe metal was not completely oxidized to Fe2O3 during discharge (oxidation of Fe). This result may be due to the covering of non-conductive Li2O formed during charging.  相似文献   

12.
The hydrogen photo-evolution was successfully achieved in aqueous (Fe1−xCrx)2O3 suspensions (0 ≤ x ≤ 1). The solid solution has been prepared by incipient wetness impregnation and characterized by X-ray diffraction, BET, transport properties and photo-electrochemistry. The oxides crystallize in the corundum structure, they exhibit n-type conductivity with activation energy of ∼0.1 eV and the conduction occurs via adiabatic polaron hops. The characterization of the band edges has been studied by the Mott Schottky plots. The onset potential of the photo-current is ∼0.2 V cathodic with respect to the flat band potential, implying a small existence of surface states within the gap region. The absorption of visible light promotes electrons into (Fe1−xCrx)2O3-CB with a potential (∼−0.5 VSCE) sufficient to reduce water into hydrogen. As expected, the quantum yield increases with decreasing the electro affinity through the substitution of iron by the more electropositive chromium which increases the band bending at the interface and favours the charge separation. The generated photo-voltage was sufficient to promote simultaneously H2O reduction and SO32− oxidation in the energetically downhill reaction (H2O + SO32− → H2 + SO42−, ΔG = −17.68 kJ mol−1). The best activity occurs over Fe1.2Cr0.8O3 in SO32− (0.1 M) solution with H2 liberation rate of 21.7 μmol g−1 min−1 and a quantum yield 0.06% under polychromatic light. Over time, a pronounced deceleration occurs, due to the competitive reduction of the end product S2O62−.  相似文献   

13.
The reduction characteristics of CuFe2O4 and Fe3O4 by methane at 600–900 °C were determined in a thermogravimetric analyzer for the purpose of using CuFe2O4 as an oxidant of two-step thermochemical methane reforming. It was found that the addition of Cu to Fe3O4 largely affected the reduction kinetics and carbon formation in methane reduction. In the case of CuFe2O4, the reduction kinetics was found to be faster than that of Fe3O4. Furthermore, carbon deposition and carbide formation from methane decomposition were effectively inhibited. In case of Fe3O4, Fe metal formed from Fe3O4 decomposed methane catalytically, that lead to the formation of graphite and Fe3C phases. It is deduced that Cu in CuFe2O4 enhanced reduction kinetics, decreased reduction temperature and prevented carbide and graphite formation. Additionally, methane conversion and CO selectivity in the syngas production step with CuFe2O4 were in the range of 33.5–55.6% and 54.9–59.6%, respectively.  相似文献   

14.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

15.
以TiO2颗粒和三聚氰胺为原料,采用高温煅烧法制备g-C3N4/TiO2复合光催化材料,研究其对仿生生态系统中磺胺类抗生素的去除效果。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、紫外可见分光光度计(UV-vis DRS)对g-C3N4/TiO2进行表征,并研究在可见光条件下g-C3N4/TiO2对溶液中磺胺甲恶唑(SMX)的光催化降解效果。结果表明,g-C3N4/TiO2具有良好的光催化活性,在可见光照射下,当g-C3N4/TiO2投加量为0.2 g·L-1时,对初始质量浓度为200 μg·L-1的SMX的去除率可达84.3%。在相同条件下,而g-C3N4和TiO2只能分别去除21.0%和16.0%的SMX,同时在仿生系统中12.37 g·m-2 g-C3N4/TiO2可以去除95.35%的SMX。通过质谱分析推测,SMX可能的降解路径分别为S—N键断裂、C—N键断裂、S—C键断裂、SMX的羟基化和SMX上氨基的硝化反应,两种可能的中间产物分别为对氨基苯磺酰胺和3-氨基-5-甲基异恶唑。  相似文献   

16.
Three series of binary oxide systems B2O3/Al2O3 were prepared and the effect of alumina on dispersion of boron (B2O3) component was investigated. The aim of the study was to achieve a maximum dispersion of B2O3 in the Al2O3 a gel matrix that would lead to increased sorption capacity on boron oxide. Many attempts were made to establish the preparation conditions that would lead to a maximum dispersion of B2O3 in the Al2O3 gel matrix needed to increase the hydrogen sorption capacity on boron oxide. The systems were characterized by X-ray diffraction, SEM, TEM and low temperature nitrogen adsorption. Hydrogen adsorption was tested in the volumetric system.Results of the study showed that the amount of hydrogen adsorbed on B2O3 depended not only on the surface area of the system but also on the separation of B2O3 domains in Al2O3 gel network. Irrespective of the method of synthesis of the binary oxide system, the dispersion of B2O3 phase reflected in the amount of hydrogen adsorbed was the highest for the systems of the lowest B/Al molar ratios studied, i.e. for B/Al = 0.25.  相似文献   

17.
In this paper, the Bi2WO6 quantum dots (QDs) decorated g-C3N4 nanoplates were successfully synthesized via a one-step hydrothermal method. The morphology of the Bi2WO6 could be tuned from regular nanoplates to quantum dots. Remarkably, the Bi2WO6 QDs coupled with g-C3N4 not only prevented the aggregation, but also decreased the size of Bi2WO6 QDs about 3.5 nm. Meanwhile, the charge separation mechanisms of Bi2WO6 QDs/g-C3N4 photocatalyst were investigated by electrochemical impedance spectra, Mott-Schottky and linear voltammetry scans. As a result, the photoelectrochemical (PEC) experiments provided forceful evidence for the charge separation mechanism of the Bi2WO6 QDs/g-C3N4 Z-scheme. The Z-scheme system not only accelerated the separation efficiency of charge, but also improved the ability of PEC water splitting at measured 1.23 V vs. RHE.  相似文献   

18.
Iron oxide n-Fe2O3 nanowire photoelectrodes were synthesized by thermal oxidation of Fe metal sheet (Alfa Co. 0.25 mm thick) in an electric oven then tested for their photoactivity. The photoresponse of the n-Fe2O3 nanowires was evaluated by measuring the rate of water splitting reaction to hydrogen and oxygen, which is proportional to photocurrent density, Jp. The optimized electric oven-made n-Fe2O3 nanowire photoelectrodes showed photocurrent densities of 1.46 mA cm−2 at measured potential of 0.1 V/SCE at illumination intensity of 100 mW cm−2 from a Solar simulator with a global AM 1.5 filter. For the optimized carbon modified (CM)-n-TiO2 synthesized by thermal flame oxidation the photocurrent density for water splitting was found to increase by two fold to 3.0 mA cm−2 measured at the same measured potential and the illumination intensity. The carbon modified (CM)-n-Fe2O3 electrode showed a shift of the open circuit potential by −100 mV/SCE compared to undoped n-Fe2O3 nanowires. A maximum photoconversion efficiency of 2.3% at applied potential of 0.5 V/Eaoc was found for CM-n-Fe2O3 compared to 1.69% for n-Fe2O3 nanowires at higher applied potential of 0.7 V/Eaoc. These CM-n- Fe2O3 and n- Fe2O3 nanowires thin films were characterized using photocurrent density measurements under monochromatic light illumination, UV-Vis spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

19.
Among samples of Mg-Ni, Mg-Ni-5Fe2O3, and Mg-Ni-5Fe, Mg-Ni-5Fe had the highest hydriding and dehydriding rates. For the as-milled Mg-Ni-5Fe alloy and the hydrided Mg-Ni-5Fe alloy after activation, the weight percentages of the constituent phases were calculated using the FullProf program. The creation of defects and the diminution of Mg particle size through reactive mechanical grinding and hydriding-dehydriding cycling, and the formation of the Mg2Ni phase are considered to increase the hydriding and dehydriding rates. Mg-14Ni-2Fe-2Ti-2Mo had higher hydriding and dehydriding rates than did any of the other samples (Mg-Ni, Mg-Ni-5Fe2O3, Mg-Ni-5Fe, and Mg-14Ni-6Fe2O3) prepared in this work.  相似文献   

20.
A photocatalyst composed of graphite-like carbon nitride (g-C3N4) and TiO2 was fabricated by a simple method to calcine the mixture of melamine and TiO2 precursor. The photocatalyst has enhanced photoactivity for hydrogen evolution from water. Characterization by XRD, FTIR, SEM and elemental analysis showed that the crystal structure and morphologies of composites were affected by the amount of melamine in the composite. The UV–Vis characterization displayed that the optical absorption range of g-C3N4/TiO2 hybrid was broadened with a synergistic effect. The photoactivity for H2 evolution was shown that the best result obtained from the composite with 67 wt% melamine has about 5 times improvement compared with bare TiO2 or pure g-C3N4. The enhanced photoactivity might be related with the favorable structure resulted from heat-treatment temperature, and the content of g-C3N4 participating in wide optical absorption, separation and transportation of electronic-holes, as well as morphology of composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号