首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we show, for the first time, the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 – ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios, NH3 concentration in feed gas and gas – hourly – space – velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175, 2.5–3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon – free reformate, i.e. represented by 5% of primary diesel replacement, reduced quite effectively the engine carbon emissions including CO2, CO and total hydrocarbons.  相似文献   

2.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

3.
To evaluate the emission characteristics of engineering vehicle diesel engine effectively and find a suitable emission control strategy, the emission characteristics experiment of China ?? engineering vehicle diesel engine was conducted with and without DOC+ DPF. The experiment took high-idling, low-idling, and free-acceleration as testing conditions, and used NanoMet3 particulate analysis system to measure PM mass concentration, number concentration and mean particle size. The gaseous emissions (NOx, NO2, CO, HC) were analyzed by flue gas analyzer Testo350. The results showed that the PM emission characteristics of engineering vehicle diesel engine improved observably under three different conditions With DOC+ DPF. PM mass emissions reduced by over 85%, and PM number emissions were more than reduce of 90%. The metabolic characteristics of PM mean particle size were sample A < sample B < sample C and high-idling < low-idling < free-acceleration. NOx concentration was not influenced obviously by DOC+ DPF, but NO2/NOx value increased. Besides, DOC+ DPF made CO emissions decreased by 85% and HC emissions decrement between 50%~80% under different conditions. DOC + DPF could improve the emission characteristics of engineering vehicle diesel engine efficiently, which was easily affected by diesel quality and equipment working hours.  相似文献   

4.
The co-combustion of diesel fuel with H2 presents a promising route to reduce the adverse effects of diesel engine exhaust pollutants on the environment and human health. This paper presents the results of H2-diesel co-combustion experiments carried out on two different research facilities, a light duty and a heavy duty diesel engine. For both engines, H2 was supplied to the engine intake manifold and aspirated with the intake air. H2 concentrations of up to 20% vol/vol and 8% vol/vol were tested in the light duty and heavy duty engines respectively. Exhaust gas circulation (EGR) was also utilised for some of the tests to control exhaust NOx emissions.The results showed NOx emissions increase with increasing H2 in the case of the light duty engine, however, in contrast, for the heavy duty engine NOx emissions were stable/reduced slightly with H2, attributable to lower in-cylinder gas temperatures during diffusion-controlled combustion. CO and particulate emissions were observed to reduce as the intake H2 was increased. For the light duty, H2 was observed to auto-ignite intermittently before diesel fuel injection had started, when the intake H2 concentration was 20% vol/vol. A similar effect was observed in the heavy duty engine at just over 8% H2 concentration.  相似文献   

5.
Concerns as to the adverse effects of diesel engine exhaust on urban air quality have resulted in increasingly stringent emissions legislation, with the prospect of many major global cities potentially banning diesel vehicles. Emissions of nitrogen oxides (NOx) and particulate matter (PM) are linked to increases in premature mortality, and the simultaneous control of both pollutants through modified combustion strategies presents a significant challenge. In this work, the effects of displacing diesel fuel with hydrogen on exhaust emissions were investigated in both a single cylinder research engine and in a demonstration vehicle. In the initial stage, tests were undertaken on a supercharged, direct injection, single cylinder diesel research engine at different engine loads, intake air pressures and EGR levels. Hydrogen was aspirated with the intake air, and EGR was simulated by supplying the intake pipe with compressed nitrogen gas. The results showed a reduction in CO2 and particulate emissions with increasing H2 addition, and an increase in NOx emissions at H2 levels greater than 10% of the total input energy to the engine. The next stage involved tests on a chassis dynamometer with a small van equipped with the multi-cylinder version of the single cylinder research engine. The van was fitted with a programmable H2 augmentation system, with H2 addition levels specified by accelerator pedal position. During full drive cycle tests conducted with and without H2 augmentation up to 10%, an average rate of 1 kW of H2 was supplied to the engine. With H2 augmentation, over the total drive-cycle, reductions in CO, NOx and particle number were observed, but a higher total PM mass was recorded.  相似文献   

6.
In this study, we examined H2 effects on the combustion and emissions of a diesel engine with low-pressure loop (LPL) exhaust gas recirculation (EGR). We converted a 2.2-L four-cylinder direct-injection diesel engine satisfying Euro5 for H2 supply. An LPL-EGR system replaced the high-pressure loop (HPL) EGR system. For all tests, the brake mean effective pressure (BMEP) was kept at 4 bar and the EGR ratio was varied from 9 to 42%. The H2 energy percentage was varied from 0 to 7.4% independently to evaluate the H2 effects and EGR effects separately. The heat release rate was calculated from the measured cylinder pressure. We found that substitution of H2 for diesel fuel made the premixed burn fraction larger, and reduced the nitrous oxide (NOx) and particulate matter (PM) emissions simultaneously. For example, the NOx emissions were reduced by 36% for an EGR of 42% and an H2 percentage of 7.4%. PM emissions were reduced by 18% for an EGR of 35% and an H2 percentage of 7.4% compared with diesel fuel only cases.  相似文献   

7.
Enhanced NO2 production (without raising total NOx) in a diesel engine combustion chamber can improve the performance of several catalytic aftertreatment systems. Thus this can facilitate a further reduction in key regulated emissions such as nitrogen oxides (NOx) and particulate matter (PM) emissions. The oxidation of NO to NO2 is an important intermediate step involved in all current aftertreatment systems that are designed for NOx and PM catalytic removal. The performance of both NOx control systems and catalysed particulate filters depend highly on the NO2 concentration. In this work we have examined the influence of using hydrogen (H2) and simulated reformate (H2, CO and EGR gases) as a supplement to diesel fuel on NO2 production. In actual engine applications a reformer will be integrated within the engine EGR system. This will not only provide the engine with recirculated exhaust gas (i.e. EGR), but will enrich it with H2 and CO.  相似文献   

8.
Hydrogen (H2) emissions characteristics of H2-diesel dual fuel engine were measured using a 2004 turbocharged heavy-duty diesel engine with H2 supplemented into the intake air. The emissions of H2 were measured using an Electron Pulse Ionization (EPI) Mass Spectrometer (MS). The effect of the amount of H2 added, the engine load, and diesel fuel flow rates on the emissions of H2 and its combustion efficiency in the engine were investigated.  相似文献   

9.
Performance and emission characteristics of two compression ignited engines of different compression ratios, number of cylinders, cooling system, and power output are studied. Waste vegetable oil-derived biofuel is used. Engines are fueled with B0, B20 and B100 mixtures. Thermal efficiency, brake specific consumption and engine emissions (CO, Unburned HC, O2 and NO) are reported and comparisons are made for fuel mixtures running on both engines. Trends of emissions and performance curves are compared to the literature of the available data. It is noted that the biofuel certainly affects unburned HC emissions regardless of engine specifications and/or operating conditions. However, the type of fuel or adding biofuel to diesel may not affect parameters such as exhaust gas temperature and emissions (CO, Unburned HC, O2, NO). These parameters may change as functions of engine specifications and operating conditions regardless of biofuel or diesel being used. These findings are supported by separate investigations using different biofuels in literature.  相似文献   

10.
Analysis of reformed EGR on the performance of a diesel particulate filter   总被引:1,自引:0,他引:1  
The use of a diesel particulate filter (DPF) in combination with an upstream diesel oxidation catalyst (DOC) has been successfully implemented and shown to reduce carbon monoxide (CO), hydrocarbon (HC) and Particulate Matter (PM) diesel exhaust gas emissions. However issues including cost, size and uncontrolled active regeneration under a low temperature window still require attention. This study therefore primarily focuses on the potential benefits of using a single catalytic coated DPF (cDPF) and a combined DOC-cDPF instead of the DOC-DPF aftertreatment system utilising a passive, low temperature regeneration method. Comparisons were made through monitoring exhaust gas compositions from an experimental single cylinder diesel engine as well as measuring the pressure drop across the filters to analyse the accumulation of soot particles. The influence of reformed EGR (REGR), enriched simulated hydrogen (H2) and CO, on DPF and cDPF soot loading was of interest as H2 promotes the NO to NO2 oxidation. Similarly the addition of simulated reformate (added either directly into the engine intake or exhaust manifold) for optimal performance of the aftertreatment systems was examined.The effects of adding REGR resulted in a significant decrease in total engine-out NOx emissions, as well as an increase in both NO2 concentration and NO2/NOx ratio. This resulted in improved filter efficiency and overall loading, especially under a DOC-cDPF aftertreatment configuration system. As a whole, a simultaneous NOx and PM reduction was achieved.  相似文献   

11.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

12.
A hydrocarbon-selective catalytic reduction (HC-SCR) silver–alumina monolith catalyst has been prepared and tested for NOx emissions control in a diesel engine. The work is based on ongoing laboratory experiments, catalyst research, and process development. Hydrogen and actual reformate (i.e. H2 and hydrocarbon species produced in a partial and exhaust gas fuel reformer) significantly improved the passive control (i.e. no externally added hydrocarbons) NOx reduction activity over the SCR catalyst using the whole engine exhaust gas from a single-cylinder diesel engine. Optimisation of the reforming process is required for various engine conditions in order to maximise H2 production and minimise fuel penalty. When diesel fuel partial oxidation and exhaust gas reforming for SCR were implemented, the calculated fuel penalty was in the range of 5–10%, which is relatively high, as both reformers were not optimised yet. During HC-SCR of NOx over silver–alumina, the known promoting effect of H2 has been found to be sensitive to various factors, especially the engine exhaust gas temperature, H2 concentration, HC concentration, HC:NOx ratio, and space velocity. Under active control (i.e. hydrocarbon injection) SCR operation, powdered Ag–Al2O3 catalysts gave significantly higher initial NOx reduction, but the catalyst activity deteriorated rapidly with time due to poisoning species adsorption (e.g. HCs, nitrates, particulate matter (PM), etc.), whilst for the Ag–Al2O3-coated monolithic catalysts, NOx reduction activity was lower but remained constant for the duration of the tests. The improved physical (mass transfer, filtering of C-containing species) and chemical (reaction kinetics) processes during HC-SCR over powders compared to monoliths led to better initial catalyst activity, but it also accelerated catalyst deactivation which led to increased diffusion limitations.  相似文献   

13.
This work aims to replace conventional diesel fuel with low and no carbon fuels like ethanol and hydrogen to reduce the harmful emission that causes environmental degradation. Pursuant to this objective, this study investigated the performance, combustion, and emission characteristics of the diesel engine operated on dual fuel mode by ethanol-diesel blends with H2 enriched intake air at different engine loads with a constant engine speed of 1500 rpm. The results were compared to sole diesel operation with and without H2 enrichment. The ethanol/diesel was blended in v/v ratios of 5, 10, and 15% and tested in a diesel engine along with a 9 lpm H2 flow rate at the intake manifold. The results revealed that 10% ethanol with 9 lpm H2 combination gives the maximum brake thermal efficiency, which is 1% and 4.8% higher than diesel with and without H2 enrichment, respectively. The brake specific fuel consumption of the diesel-ethanol blends with H2 flow increased with increasing ethanol ratio in the blend. When the ethanol ratio increased from 5 to 10%, in-cylinder pressure and heat release rate were increased, whereas HC, CO, and NOx emissions were decreased. At maximum load, the CO and HC emission of 10% ethanol blend with 9 lpm H2 case decreased by about 50% and 28.7% compared to sole diesel. However, NOx emission of the same blend was 11.4% higher than diesel. From the results, the study concludes that 10% ethanol blended diesel with a 9 lpm H2 flow rate at the intake port is the best dual-fuel mode combination that gives the best engine characteristics with maximum diesel replacement.  相似文献   

14.
Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies.  相似文献   

15.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

16.
This paper investigated the nitrogen dioxide (NO2) emissions of a heavy-duty diesel engine operated in hydrogen (H2)-diesel dual fuel combustion mode with H2 supplemented into the intake air. Preliminary measurements using the 13-mode European Stationary Cycle (ESC) demonstrated the significant effect of H2 addition on the emissions of NO2. The detailed effects of H2 addition and engine load on NO2 emissions were examined at 1200 RPM. The addition of a small amount of H2 increased substantially the emissions of NO2 and the NO2/NOx ratio, especially at low load. Increasing the engine load was found to inhibit the enhancing effect of H2 on the conversion of NO to NO2 with the maximum NO2/NOx ratio observed at lower H2 concentration. The maximum NO2 emissions of the H2-diesel dual fuel operation were three (at 70% load) to five (at 10% load) times that of diesel operation. Further increasing the addition of H2 beyond the point with maximum NO2 emissions still produced more NO2 than for diesel-only operation. Based on the experimental data obtained, the engine load and maximum averaged bulk mixture temperature were not the main factors dominating the formation of NO2 in the H2-diesel dual fuel engine. A preliminary analysis demonstrated the significant effect of the unburned H2 on NO2 emissions. When mixed with the hot combustion product, the unburned H2 that survived the main combustion process might further oxidize to raise the HO2 levels and enhance the conversion of NO to NO2. In comparison, the changes in the combustion process including the start of combustion, combustion duration and maximum heat release rate may not contribute substantially to the increased NO2 emissions observed.  相似文献   

17.
Experiments were conducted to investigate the combustion and emission characteristics of a diesel engine with addition of hydrogen or methane for dual-fuel operation, and mixtures of hydrogen–methane for tri-fuel operation. The in-cylinder pressure and heat release rate change slightly at low to medium loads but increase dramatically at high load owing to the high combustion temperature and high quantity of pilot diesel fuel which contribute to better combustion of the gaseous fuels. The performance of the engine with tri-fuel operation at 30% load improves with the increase of hydrogen fraction in methane and is always higher than that with dual-fuel operations. Compared with ULSD–CH4 operation, hydrogen addition in methane contributes to a reduction of CO/CO2/HC emissions without penalty on NOx emission. Dual-fuel and tri-fuel operations suppress particle emission to the similar extent. All the gaseous fuels reduce the geometry mean diameter and total number concentration of diesel particulate. Tri-fuel operation with 30% hydrogen addition in methane is observed to be the best fuel in reducing particulate and NOx emissions at 70 and 90% loads.  相似文献   

18.
Overcoming diesel engine emissions trade-off effects, especially NOx and Bosch smoke number (BSN), requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 + N2 containing gas mixture, obtained from diesel fuel reforming system, can lead to new generation low polluting diesel engines.  相似文献   

19.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

20.
This paper investigated the effect of hydrogen (H2) addition on the combustion process of a heavy-duty diesel engine. The addition of a small amount of H2 was shown to have a mild effect on the cylinder pressure and combustion process. When operated at high load, the addition of a relatively large amount of H2 substantially increased the peak cylinder pressure and the peak heat release rate. Compared to the two-stage combustion process of diesel engines, a featured three-stage combustion process of the H2–diesel dual fuel engine was observed. The extremely high peak heat release rate represented a combination of diesel diffusion combustion and the premixed combustion of H2 consumed by multiple turbulent flames, which substantially enhanced the combustion process of H2–diesel dual fuel engine. However, the addition of a relatively large amount of H2 at low load did not change the two-stage heat release process pattern. The premixed combustion was dramatically inhibited while the diffusion combustion was slightly enhanced and elongated. The substantially reduced peak cylinder pressure at low load was due to the deteriorated premixed combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号